
Finding Subgraphs with Maximum Total Density
and Limited Overlap

Oana Denisa Balalau∗

Institut Mines Telecom,
Telecom Paristech, CNRS

oana.balalau@telecom-paristech.fr

Francesco Bonchi
Yahoo Labs

Barcelona, Spain
bonchi@yahoo-inc.com

T-H. Hubert Chan†

Dept. of Computer Science
The University of Hong Kong

hubert@cs.hku.hk

Francesco Gullo
Yahoo Labs

Barcelona, Spain
gullo@yahoo-inc.com

Mauro Sozio‡

Institut Mines Telecom,
Telecom Paristech, CNRS
sozio@telecom-paristech.fr

ABSTRACT
Finding dense subgraphs in large graphs is a key primitive
in a variety of real-world application domains, encompass-
ing social network analytics, event detection, biology, and
finance. In most such applications, one typically aims at
finding several (possibly overlapping) dense subgraphs which
might correspond to communities in social networks or in-
teresting events. While a large amount of work is devoted
to finding a single densest subgraph, perhaps surprisingly,
the problem of finding several dense subgraphs with limited
overlap has not been studied in a principled way, to the best
of our knowledge. In this work we define and study a natural
generalization of the densest subgraph problem, where the
main goal is to find at most k subgraphs with maximum to-
tal aggregate density, while satisfying an upper bound on the
pairwise Jaccard coefficient between the sets of nodes of the
subgraphs. After showing that such a problem is NP-Hard,
we devise an efficient algorithm that comes with provable
guarantees in some cases of interest, as well as, an efficient
practical heuristic. Our extensive evaluation on large real-
world graphs confirms the efficiency and effectiveness of our
algorithms.

1. INTRODUCTION
Finding dense subgraphs in large graphs has emerged as

a key primitive in a variety of real-world application do-
mains [19], ranging from biology [13, 18] to finance [12]. In
the Web domain, Gibson et al. [14] have observed that dense
subgraphs might correspond to thematic group of pages or

∗Partially funded by a Google Faculty Research Award.
†Partially funded by France/HK Grant: F-HK31/11T and
Hong Kong RGC HKU17200214E.
‡Partially funded by a Google Faculty Research Award and
the France/HK PHC Procore 2012 grant 26893QA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WSDM’15, February 2–6, 2015, Shanghai, China.
Copyright 2015 ACM 978-1-4503-3317-7/15/02 ...$15.00.
http://dx.doi.org/10.1145/2684822.2685298.

spam link farms. In the context of social networks, find-
ing dense subgraphs has been employed for organizing social
events and community detection [21], as well as for expert
team formation [23, 8]. Angel et al. [2] have shown how
finding dense subgraphs in the entity co-occurrence graph
constructed from micro-blogging streams can be used to au-
tomatically detect important events.

Many of the aforementioned applications ask for finding
several (possibly overlapping) dense subgraphs, which might
correspond to communities in social networks or important
events. Perhaps surprisingly, such a problem has not been
studied in a principled way to the best of our knowledge. In
this work we aim at filling this gap.

In a first attempt to give a formal definition for such a
problem, one could aim at finding at most k subgraphs with
maximum aggregate total density. However, it turns out
that such a formulation might lead to find several subgraphs
being very similar between each other and in particular shar-
ing a large fraction of nodes of a relatively dense subgraph.
Such a solution is not really interesting as the dense sub-
graphs to be found should ideally exhibit some appreciable
degree of diversity among each other. Therefore, we enforce
an upper bound on the pairwise Jaccard coefficient between
the sets of nodes of the subgraphs.

Several definitions of density have been studied in the lit-
erature, among which the average degree density stands outs
as a natural and widely used definition. Subgraphs with
maximum average degree density are usually referred to as
densest subgraphs. One appealing feature of such a defini-
tion is that densest subgraphs can be found in polynomial
time using the linear programming (LP) algorithm presented
in [9] or the maximum flow algorithm in [15], while there
are efficient algorithms which come with provable approxi-
mation guarantees [9]. In our work we focus on the average
degree density.

A natural heuristic for our main problem is the follow-
ing one: Greedily find one densest subgraph in the current
graph, remove all its vertices and edges, and iterate until k
subgraphs are found or the current graph is empty (see e.g.,
[23]). This heuristic, although reasonable, might potentially
deliver arbitrarily bad solutions in terms of our objective
function, as we show in the remainder. Another observation
is that such an approach would produce subgraphs which are
pairwise disjoint. By allowing some limited amount of over-
lap, one could find more interesting (i.e., denser) solutions,

while maintaining enough diversity among the subgraphs ex-
tracted. Another drawback of the previous heuristic is that
algorithms for finding densest subgraphs (based on linear
programming and maximum flow) cannot cope with large
graphs containing millions of edges.
In our work we present an efficient algorithm for our prob-

lem which comes with provable guarantees in some cases of
interest. We introduce the concept of minimality of a dens-
est subgraph, (roughly speaking a densest subgraph is min-
imal if it does not contain any other densest subgraph) and
develop efficient algorithms for finding minimal densest sub-
graphs, which will be pivotal in solving our main problem.
Our algorithm for finding minimal densest subgraphs turns
out to be the fastest known algorithm for the exact compu-
tation of a densest subgraph as it can handle large graphs
containing up to 10 million edges, as shown by our experi-
mental evaluation. We finally devise an efficient heuristic so
to find subgraphs with limited overlap on even larger input
graphs.
More in detail, the contributions of this paper are sum-

marized as follows:

• We define the (k, α)-Dense Subgraph with Limited
Overlap problem ((k, α)-DSLO): given an integer k >
0 as well as a real number α ∈ [0, 1], find at most k
subgraphs that maximize the total aggregate density,
i.e., the sum of the average degree of each subgraph,
under the constraint that the the maximum pairwise
Jaccard coefficient between the set of nodes in the sub-
graphs be at most α. We prove that (k, α)–DSLO is
NP-hard even when α = 0 (disjoint subgraphs).

• We improve the LP-based approach by Charikar [9],
thus achieving the fastest known exact algorithm for
the densest subgraph problem. Our algorithm has the
desirable property of producing minimal densest sub-
graphs and use our fast LP solver as a subroutine. In
particular, we prove that the number of calls to an
LP-solver is logarithmic in the number of nodes with
high probability. This allows us to deal with large real-
world graphs.

• We devise an algorithm (MinAndRemove) for the
(k, α)-DSLO problem. We prove that, in the case the
input graph contains k disjoint densest subgraphs, our
algorithm is guaranteed to find an optimum solution
for (k, α)-DSLO. In the general case, we show empir-
ically that our algorithm can find solutions that are
very close to an optimum solution of our problem.

• We present a fast heuristic (FastDSLO) for (k, α)-
DSLO which, albeit less accurate thanMinAndRemove,
is able to find dense subgraphs with limited overlap
on even larger graphs (containing up to 100 million
edges).

In Section 2 we discuss the related work, while in Sec-
tion 3 we define our main problem formally and prove its
NP-hardness. All our algorithms are presented in Section 4,
while Section 5 contains an experimental evaluation on large
real-world graphs. Finally, in Section 6 we draw our conclu-
sions and discuss interesting directions for future work.

2. RELATED WORK
Finding a single densest subgraph. The problem of
finding a dense subgraph from a large input graph has been
widely studied [19]. Generally speaking, such a problem
aims at finding a subgraph of a given input graph that max-
imizes some notion of density. A density notion widely em-
ployed in the literature is the average degree. Due to its
popularity, the corresponding problem of finding a subgraph
that maximizes the average degree has been commonly re-
ferred to as the densest-subgraph problem. The densest
subgraph can be identified in polynomial time by solving
a parametric maximum-flow problem [15]. Charikar [9] in-
troduces a linear-programming formulation of the problem,
while also showing that the greedy algorithm proposed by
Asashiro et al. [5] produces a 1

2
-approximation in linear

time. The densest-subgraph problem has also been studied
in a streaming context [6].

A more difficult variant of the densest-subgraph problem
is the so-called DkS problem, which consists of finding a
densest subgraph of k vertices. Such a problem is known
to be NP-hard [4], while an algorithm with approximation

guarantee of O(n
1
4) has been presented in [7]. It is also well

known that there cannot be any PTAS for the DkS problem
under reasonable complexity assumptions [16]. Some vari-
ants of the DkS problem are introduced by Andersen and
Chellapilla [1] and further investigated in [17].

A number of works depart from the classic average-degree
maximization problem and focus on extracting a subgraph
maximizing other notions of density. Tsourakakis et al. [23]
resort to the notion of quasi-clique to define an alternative
measure of density, while Wang et al. [25] focus on a den-
sity based on triangle counting. Sozio et al. [21] focus on
minimum degree density while enforcing so-called monotone
constraints.

Finding multiple densest subgraphs. Unlike its single-
subgraph counterpart, the problem of finding a set of k dense
subgraphs has received considerably less attention. Few au-
thors [24, 23] have discussed it, without providing any rig-
orous formulation of the problem. Instead they consider the
most obvious heuristic that iteratively finds and removes the
densest subgraph until k subgraphs have been found. In our
work, we precisely formulate and characterize the problem
of finding at most k disjoint subgraphs that maximize the
sum of densities, while also showing, both theoretically and
empirically, that the aforementioned simple heuristic is not
well-suited for such a problem.

Apart from that, existing research has considered tangen-
tially related problems, such as finding nested subgraphs
containing a set of query nodes and exhibiting non-increasing
densities [22], discovering overlapping dense subgraphs con-
taining a query node [11], or extracting all large-enough
dense bipartite subgraphs in massive graphs [14]. Further-
more, Angel et al. [3] focus on maintaining the set of all (pos-
sibly overlapping) subgraphs exceeding a density threshold
under streaming edge weight updates. Chen and Saad [10]
instead propose a matrix-blocking model to identify dense
subgraphs that best cover the input graph. Particularly, the
latter problem differs from ours as it aims at finding a set of
dense subgraphs that cover most of the input graph, while
discarding outlier (i.e., non-dense) graph zones, but it does
not attempt at maximizing the sum of the densities of k
subgraphs.

3. DEFINITION AND COMPLEXITY
In this section, we define our problem formally and we

study its computational complexity.
Given an undirected graph G = (V,E), we define its den-

sity ρ(G) to be |E|
|V | , which corresponds to half the average

degree of the nodes in G. For a set of vertices S ⊆ V , we de-
note the subgraph of G induced by S as G(S) = (S,E(S)),
where E(S) = {{u, v} ∈ E|u, v ∈ S}).
In a first attempt to give a formal definition for our prob-

lem, one could aim at finding at most k subgraphs with max-
imum aggregate total density. However, it turns out that
such a formulation might lead to find several subgraphs be-
ing very similar between each other and in particular sharing
a large fraction of nodes of a relatively dense subgraph. Such
a solution is not really interesting as the dense subgraphs to
be found should ideally exhibit some appreciable degree of
diversity among each other. Therefore, we enforce an upper
bound α ∈ [0, 1] on the pairwise Jaccard coefficient between
the sets of nodes of the subgraphs, with one indicating that
the two subgraphs contain exactly the same nodes and zero
indicating that they are disjoint. Our problem can then be
formalized as follows.

Definition 3.1 ((k, α)-DSLO) Given an undirected graph
G = (V,E), an integer k > 0, as well as a rational number
α ∈ [0, 1], find a set of sets of vertices S = {S1, . . . , Sk̄} with
k̄ ≤ k, and Si ⊆ V, ∀Si ∈ S, such that

k̄∑
i=1

ρ(G(Si))) is maximum, and

|Si ∩ Sj |
|Si ∪ Sj |

≤ α ∀Si, Sj ∈ S. (1)

Theorem 3.1 (k, α)-DSLO is NP-hard.

We prove NP-hardness by reducing the well-known max-
imum independent set problem to a special case of (k, α)-
DSLO i.e., to case where α = 0. Particularly, we show that
given a graph G and a positive integer k, it is NP-hard to
find k disjoint subsets S1, S2, . . . , Sk of nodes such that the
sum of densities

∑k
i=1 ρ(Si) is maximized. In particular, we

consider a decisional version of the problem, in which we are
given a target τ , and the problem is to decide if there are k
disjoint subsets whose sum of densities is at least τ .
Our hardness proof reduces from the NP-hardness of max-

imum independent set on degree bounded graphs [20]. In
particular, for any fixed ∆ ≥ 3, given a graph G with max-
imum degree at most ∆ and an integer k, it is NP-hard to
decide if G contains an independent set with size k.
Reduction Construction. Given an instance G = (V,E)
of the maximum independent set problem with maximum

degree at most ∆, we construct a graph Ĝ and select a
threshold τ such that G has an independent set of size k

iff Ĝ contains k disjoint subsets whose sum of densities is
at least τ .
Node Gadget. We choose some N = n4, where n = |V |.
Given a node u, we create a gadget graph Gu as follows.
Let Cu be a set of N independent nodes, which forms the
core of Gu. Let Au be a set ∆ independent nodes, which
are the arms of Gu. The graph Gu is a complete bipartite
graph between Cu and Au, and so contains N∆ edges.

Interaction between Node Gadgets. For distinct nodes u and
v in V , the cores Cu and Cv are disjoint. If {u, v} /∈ E,
then Au and Av are disjoint; but if {u, v} ∈ E, then |Au ∩
Av| = 1, i.e., the two gadgets Gu and Gv share exactly
one arm. Moreover, each arm node can be shared by at
most 2 gadget graphs. Since G has degree at most ∆, each
arm of a gadget graph can be potentially used to connect
with another gadget according to G. This completes the

description of graph Ĝ.
Before we state our threshold τ , we consider the densities

of subgraphs in Ĝ.

Lemma 3.1 The density of any subset of nodes in Ĝ is at
most ∆. Moreover, if the density of a subset S is at least
∆− 1

2
, then S must contain all the arms Au of some u.

Proof. The result follows from the following statement.

Suppose S is a subset of nodes in Ĝ that intersects the cores
of some r gadgets. Suppose for some D > 0, for each i ∈ [r],
S contains di arm nodes of gadget graph Gi, where di ≤ D.
(Observe that each arm node can belong to more than one
gadget graph Gi.) Then, we show that the density of S is
at most D.

For i ∈ [r], suppose S contains ni nodes from the core Ci

of gadget graph Gi. The total number of edges induced by S
is

∑
i∈[r] nidi. If none of the Gi’s share an arm, the number

of nodes in S is
∑

i∈[r](ni + di). Observe that for each pair
of Gi’s that share an arm, the number of nodes decreases
by 1. Since each Gi can share arms with at most di other
gadgets, the maximum number of pairs that can share an

arm is
∑

i∈[r] di

2
.

Hence, |S| ≥
∑

i∈[r](ni+di)−
∑

i∈[r] di

2
=

∑
i∈[r](ni+

di
2
).

Therefore, the density of S is at most∑
i∈[r] nidi∑

i∈[r](ni+
di
2

)
≤ maxi∈[r]

nidi

ni+
di
2

≤ ND

N+D
2

, where the last

inequality follows because the expression nidi

ni+
di
2

is increasing

in both ni and di.
Finally, observing that ND

N+D
2

≤ D, we finish the proof of

the statement.

The following lemma completes the reduction proof.

Lemma 3.2 The graph G (with maximum degree at most

∆) contains an independent set of size k iff the graph Ĝ
contains k disjoint subsets whose sum of densities is at least
τ = k∆− 1

n
.

Proof. The forward direction is easy because each point
in the independent set corresponds to a disjoint gadget graph,
which has density ∆N

N+∆
≥ ∆ − 1

n2 , because ∆ < n and

N = n4. Hence, the sum of the densities of the k disjoint
gadget graphs is at least k∆− 1

n
.

For the backward direction, observe that each of the k

disjoint subsets Si’s in Ĝ must have density at least ∆− 1
2
.

Otherwise, there exists k − 1 disjoint subsets whose sum of
densities is at least (k − 1)∆ + 1

2
− 1

n
> (k − 1)∆. This

implies that there exists a subset in Ĝ with density strictly
larger than ∆, which is impossible by Lemma 3.1.

Hence, we conclude that each of k disjoint subsets Si’s
must have density at least ∆− 1

2
, which implies by Lemma 3.1

that each Si must contain all the arms of some core Au for
some u ∈ V . This means the k subsets Si’s correspond to k
independent nodes in G.

Figure 1: A graph G where Naive gives poor results.
Notice that G is a non-minimal densest subgraph.

4. ALGORITHMS
As (k, α)-DSLO is NP-Hard, we devise heuristics that

work well in practice while also exhibiting provable guar-
antees in some cases of interest. We start by considering
one natural heuristic for the disjoint case (α = 0): at each
step, we compute the densest subgraph in the current graph
(using for example the approach in [9]), we remove all its
nodes and edges from the current graph, iterating until we
find exactly k subgraphs or until the current graph contains
no edges. We hereinafter refer to this heuristic as Naive.
This simple heuristic gives unfortunately very poor results

in the worst case, as illustrated in Figure 1.
In that example the density ρ(G) of the graph is 2 (there

are 10k+4(k− 1) edges and 5k+2(k− 1) nodes), like every
subgraph Gi of G. Naive would find the whole graph G and
then would stop giving a solution with total density equal to
2, while an optimum solution to our problem is composed of
the disjoint subgraphs G1, . . . , Gk with total density equal
to 2k. This highlights one of the limitations of Naive and
paves the way to the definition of minimal dense graphs.

Definition 4.1 (Minimal dense graphs) An undirected graph
G with density ρ(G) is a minimal dense graph if for any
proper subgraph H of G, ρ(H) < ρ(G). Moreover, we say
that G is a minimal densest subgraph if it is minimal and
has maximum density.

Notice that the graph G in Figure 1 is a non-minimal
densest subgraph.
Finding minimal dense graphs plays an important role in

solving our problem, as illustrated by the following vari-
ant of Naive. At each step we compute a minimal densest
subgraph, we remove its nodes and edges from the current
graph, and we iterate until k subgraphs are found or there
are no edges left in the current graph. Including at each step
a minimal dense subgraph H, rather than a supergraph G
of H, would not decrease the total density of our solution
(as H is as dense as G) and might actually increase it, as
fewer edges are removed from the current graph after includ-
ing H in the solution. It turns out that this simple variant
of Naive, finds k disjoint densest subgraphs, if they exist.
This is proved in Section 4.2. In Section 4.1, we show how
to efficiently compute minimal densest subgraphs.
Drawing inspiration from the techniques developed for

computing minimal densest subgraphs, we then address the
(k, α)-DSLO problem. The main challenge here is to take
full advantage of the overlap between subgraphs so to maxi-
mize our objective function. Computing minimal subgraphs
is desirable also in this case, in order to minimize the num-
ber of edges that are removed at each step. This is discussed
in Section 4.2. In Section 5, we perform an extensive eval-
uation of our algorithms showing the effectiveness of our
heuristics for (k, α)-DSLO on large real-world graphs and

that minimal densest subgraphs can be computed efficiently
on large graphs containing millions of edges.

4.1 Finding Minimal Densest Subgraphs
Our algorithm for computing minimal densest subgraphs

is inspired by the linear programming (LP)-based algorithm
for the densest subgraph developed by Charikar [9]. In order
to have some provable guarantees for our problem, we need
to dive deeper into the structure of the solutions of the LP.
We start by recalling the algorithm in [9].

Given a graph G = (V,E), Charikar [9] proposed the fol-
lowing LP formulation for the densest subgraph problem.
For each edge ij ∈ E we introduce a variable xij taking
values in [0, 1], while for each node v we introduce variable
xv (taking values in [0, 1]). We have the following linear
program:

max
∑
ij∈E

xij (BasicLP)

s.t. xij ≤ yi ∀ij ∈ E (2)

xij ≤ yj ∀ij ∈ E (3)∑
i∈V

yi ≤ 1 (4)

xij , yi ≥ 0 ∀i, j. (5)

To gain an intuition about the above LP, consider a dens-
est subgraph H = (S,E(S)), S ⊆ V . We can then define a
feasible solution zS = (xS , yS) for BasicLP as follows:

xS
ij =

{
1
|S| if both i, j ∈ S

0 otherwise.

yS
i =

{
1
|S| if i ∈ S

0 otherwise.

Recall that the density of the subgraph H = (S,E(S)) is

defined as ρ(H) = ρ(S) = |E(S)|
|S| . Observe that zS is feasible

for the basic LP, and has objective value ρ(S). Vice versa,
given an optimum solution zS = (xS , yS) for BasicLP, one
can construct an optimum solution for the densest subgraph
problem using the rounding algorithm described in [9]: We
first order the yS

i ’s by non-increasing order. Let y1, . . . , yn be
the variables so ordered. We then find the prefix y1, . . . , yk
in such ordering whose corresponding induced subgraph H
achieves maximum density, for any value of k in [2, n]. It
can be proved that H is a densest subgraph.

One can then solve BasicLP using efficient LP solvers such
as Gurobi or CPLEX and then compute the densest sub-
graph by running the algorithm described above. In the
rest of this section, we present a more efficient algorithm
for computing the densest subgraph, which allows us to deal
with large real-world graphs containing millions of edges.
The latter algorithm uses the following fact.

Lemma 4.1 Each optimal solution of BasicLP is a convex
combination of points in {zS : S ⊆ V, S is densest subgraph}.

Proof. Suppose z∗ = (x∗, y∗) is an optimal solution.
Then, since the objective value to be maximized is the sum
of all xij ’s, it follows that if z

∗ is optimal, it must be the case
that

∑
i∈V y∗

i = 1, and for all ij ∈ E, x∗
ij = min{y∗

i , y
∗
j }.

We prove the result by induction on the number k of non-
zero coordinates of y∗. If E contains at least one edge, it

follows that k ≥ 2. For the base case k = 2, suppose {i, j}
is the support of y∗. Since x∗

ij = min{y∗
i , y

∗
j } is maximized

when y∗
i = y∗

j = 1
2
, the result follows.

For the inductive step, suppose y∗ has k > 2 non-zero
coordinates corresponding to some subset S ⊆ V , where
k = |S|. If all the non-zero y∗

i ’s are the same for i ∈ S, then
it follows that z∗ = zS , and the result follows; otherwise, let
α := min{y∗

i : i ∈ S}. Observe that kα ≤ 1.
Define ẑ = (x̂, ŷ) as follows.

x̂ij =

{
x∗
ij−α

1−kα
if both i, j ∈ S

0 otherwise.

ŷi =

{
y∗
i −α

1−kα
if i ∈ S

0 otherwise.

Hence, z∗ = kα·zS+(1−kα)ẑ, and the number of non-zero
coordinates of ŷ is strictly less than k. Hence, to complete
the inductive step, it suffices to show that ẑ is an optimal
solution to the basic LP.
Observe that since the objective function is linear, p(z∗) =

kα · p(zS) + (1 − kα)p(ẑ), it is enough to show that ẑ is
feasible, because if p(ẑ) < p(z∗), it must be the case that
p(zS) > p(z∗), which violates the optimality of z∗.
To check the feasibility of ẑ, we have for ij ∈ E(S), x̂ij =

x∗
ij−α

1−kα
=

min{y∗
i ,y∗

j }−α

1−kα
= min{ŷi, ŷj}.

Moreover,
∑

i∈V ŷi =
∑

i∈S

y∗
i −α

1−kα
=

∑
i∈S y∗

i −kα

1−kα
= 1, be-

cause
∑

i∈S y∗
i = 1. Therefore, ẑ is feasible and this com-

pletes the inductive step.

The following corollary follows from Lemma 4.1.

Corollary 4.1 Suppose S1, S2 both induce densest subgraphs
in V . Then, both S1 ∩ S2 and S1 ∪ S2 induce densest sub-
graphs in V .

Another interesting consequence of Lemma 4.1 is that we
can find a densest subgraph by first solving BasicLP, and
then returning the subgraph consisting of all nodes whose
corresponding variables have values strictly larger than zero
in our solution.
We now focus on computing a minimal densest subgraph

H of a graph G given in input. We recall that any (proper)
subgraph of H must have density strictly smaller than H.
As we shall use an LP-based approach to find a densest

subgraphs, we start by showing how to speed up the LP-
based algorithm presented in [9]. As proved in Lemma 4.1,
the subgraph induced by variables with maximum value in
an optimum solution for BasicLP is a densest subgraph.
Starting from a solution for BasicLP we can then derive
a densest subgraph in O(n), in contrast with the rounding
algorithm described in [9], which requires Ω(n logn + m)
operations, where n,m are the number of nodes and edges
in G, respectively. To the best of our knowledge, this fact
was not known before. We shall refer to this more efficient
algorithm for the densest subgraph as FastLP.
Our algorithm for finding minimal dense subgraphs em-

ploys two subroutines: TryRemove andTryEnhance. The
former one takes as input a graph G and a node u and checks
whether u can be removed from G without decreasing its
density. This is done by computing a densest subgraph in
the input graph (V \ {u}, E) and checking whether the den-
sity drops. If this is not the case, u can be removed from G.
A pseudocode for TryRemove is shown in Algorithm 1.

Algorithm 1 TryRemove(u,G)

1: Input: A graphG = (V,E) and a node u to be removed.
2: Output: Returns a densest subgraph in G not con-

taining u, or null if every densest subgraph in G must
contain u.

3: Solve the BasicLP with input (V \ {u}, E) and run
FastLP to find a densest subgraph H in (V \ {u}, E).

4: if ρ(H) ≥ ρ(G) then
5: return H
6: else
7: return null
8: end if

We could then compute H by iterating through all nodes
and checking for each such a node whether it can be removed
or not. This algorithm would not be efficient, in that, it re-
quires to solve Θ(n) LPs, one for each node of G. Therefore,
we devise a much more efficient algorithm which requires to
solve O(log n) LPs, with high probability. Such an algo-
rithm employs the subroutine TryEnhance, which receives
in input a graph G, a node u, as well as density ρmax of a
densest subgraph in G. It returns a densest subgraph in G
which contains u while having smallest number of nodes (or
null in case there is no densest subgraph containing u).

This is achieved by solving a carefully defined LP whose
objective is to maximize yu subject to the constraint that
the density is equal to ρmax. The main intuition is that for
each densest subgraph in G with S nodes there is a solution
to the LP where variables have all values 1

|S| . Therefore, by

maximizing yu we can find a densest subgraph containing u
with smallest number of nodes. This is proved in Lemma 4.2
and follows partially from Lemma 4.1. See Algorithm 2 for
a pseudocode of TryEnhance.

Algorithm 2 TryEnhance(u,G, ρmax)

1: Input: a graph G = (V,E), a node u ∈ V , the density
ρmax of the densest subgraph in G.

2: Output: Returns a densest subgraph in G containing u
with minimum cardinality or null if there is no densest
subgraph containing u.

3: Modify the basic LP by adding the constraint∑
ij∈E xij = ρmax, maximizing the objective function

yu; solve the modified LP by running FastLP.
4: If there is no feasible solution to the modified LP then

return null.
5: Run FastLP to find a densest subgraph H = (V̄ , Ē)

starting from the LP solution.
6: return H

Lemma 4.2 Given a graph G = (V,E) and a node u ∈ V ,
the subroutine TryEnhance returns a densest subgraph in
G containing u with the smallest number of nodes.

Proof. The smallest densest subgraph containing u is
unique, because by Corollary 4.1, the intersection of all dens-
est subgraphs containing u is also a densest subgraph.

Consider the optimal solution z = (x, y) computed from
the modified LP in the subroutineTryEnhance(u,G, ρmax).
By Lemma 4.1, z is a convex combination of zSi ’s, where
each Si induces a densest subgraph in G. Since the objec-
tive is to maximize yu, and zS is a feasible solution, it follows
that yu is positive, which means that at least one of the Si’s

must contain u. Since for each Si containing u, ySi
u = 1

|Si|
,

it follows that if z is a convex combination of more than one
Si’s, the value yu could be strictly improved by zS , where S
is the intersection of all Si’s containing u.

Hence, it follows that z = zS for some densest subgraph
induced by S, which has to be the smallest densest subset
containing u.

The main steps for finding efficiently a minimal dens-
est subgraph are the following ones. At each iteration: 1)
we pick one node u from our current graph, uniformly at
random; 2) we execute the subroutines TryRemove and
TryEnhance with input u and our current graph; 3) our
current graph is then set to be the smallest subgraph among
the ones returned by the previous subroutines. It turns out
that 2 log 4

3
n iterations suffice to find a minimal densest sub-

graph, with high probability. This is proved in Corollary 4.3,
while Lemma 4.3 proves that our algorithm finds a minimal
densest subgraph.
In order to speed up even further our algorithm, we in-

clude a preprocessing phase where we remove nodes not be-
longing to any densest subgraph. This is done as follows.
We first run the linear-time greedy algorithm presented by
Charikar in [9] so to find a 2-approximation solution to the
densest subgraph. Let ρapx be the density of the graphs so
found. As noted in [17], no nodes with degree smaller than
the density of the densest subgraph belongs to any densest
subgraph. Therefore, we can safely remove all nodes with
degree smaller than ρapx from the input graph. A pseu-
docode of our algorithm is shown in Algorithm 3.

Algorithm 3 FindMinimal(G)

1: Input: A graph G = (V,E) with n nodes.
2: Output: A minimal densest subgraph in G.
3: Run the greedy algorithm to find a 2-approximation so-

lution for the densest subgraph. Let ρapx be the density
of such a subgraph.

4: Remove iteratively nodes with degree smaller than ρapx
and let Ḡ be the graphs so obtained.

5: Find a densest subgraph H = (V̄ , Ē) in Ḡ by running
FastLP. Let ρmax be its density.

6: while (true) do
7: let u be a node picked uniformly at random from V̄
8: let H1 := TryRemove(u,H)
9: let H2 := TryEnhance(u,H, ρmax)
10: IF H1 is null return H2

11: let Ĥ be the subgraph with minimum number of
nodes between H1 and H2, breaking ties arbitrarily

12: H := Ĥ
13: end while
14: return H

Lemma 4.3 FindMinimal(G) returns a minimal densest
subgraph of G.

Proof. Algorithm 3 always terminates. After each iter-
ation of the while loop, either TryRemove(u,H) returns
null and therefore the algorithm terminates or the node u
is removed from the current graph. Hence, at each itera-
tion the number of nodes of the current graph decreases by
at least one. Observe that the graph H is always a dens-
est subgraph, throughout the execution of the algorithm.
When the algorithm terminates, it must be the case that

TryRemove(u,H) returns null, for some node u in H. This
means that every densest subgraph of H must contain u.
By Lemma 4.2, TryEnhance(u,H, ρmax) returns the small-
est densest subgraph containing u, and so it must be mini-
mal.

We prove that O(logn) iterations of the while loop of
FindMinimal(G) suffice to find a minimal densest subgraph
in G. To this end, we show that at each iteration the
number of nodes in the current subgraph decreases by a
constant fraction with constant probability. A standard
measure concentration argument concludes the proof. Let
H = (V̄ , Ē) be a densest subgraph of G. For a node u ∈ V̄ ,
ε > 0, we say that u is ε-bad in H = (V̄ , Ē) if both H1 :=
TryRemove(u,H) andH2 := TryEnhance(u,H, ρmax) con-
tain more than (1− ε)|V̄ | nodes, and neither of them is null.

Lemma 4.4 Given a graph H = (V̄ , Ē) with maximum
density ρmax, the fraction of ε-bad nodes in V̄ is at most
2ε, for any ε > 0.

Proof. For contradiction’s sake, suppose the set B of ε-
bad nodes has size more than 2ε|V̄ |. For each u ∈ B, define
Au := V̄ \ TryRemove(u,H). Observe that u ∈ Au, and
by the definition of ε-bad, |Au| < ε|V̄ |.

Consider an arbitrary order of B := {u1, u2, . . . , }. Since
B contains more than 2ε|V̄ | points, and each |Au| < ε|v̄|,
there exists a smallest i such that ε|V̄ | ≤ |∪i

j=1Auj | < 2ε|V̄ |.
Observe that there exists û ∈ B \ (∪i

j=1Auj). Since for
each j, TryRemove(uj , H) is a densest subgraph, then by
Lemma 4.1, ∩i

j=1TryRemove(uj , H) = V̄ \ (∪i
j=1Auj) in-

duces a densest subgraph that contains û and has size at
most (1 − ε)|V̄ |. Therefore, it follows that the algorithm
TryEnhance(û,H, ρmax) will return a densest subgraph
that has size at most (1− ε)|V̄ |, thereby contradicting that
û is ε-bad.

By taking ε = 1
4

in Lemma 4.4, we have the following
corollary.

Corollary 4.2 At each iteration of FindMinimal(G), the
algorithm either terminates with a minimal densest subgraph,

or with probability at least 1
2
, the number of nodes in Ĥ is

at most 3
4
· |V̄ |.

Corollary 4.3 By standard Chernoff bound, the number of
iterations in FindMinimal(G) is at most a constant times
its mean, which is at most 2 log 4

3
n, where n is the number

of nodes in G.

Our algorithm FindMinimal(G) allows us to compute
minimal densest subgraphs in graphs containing millions of
edges. In particular, the pruning step and the fact that we
can bound the number of iterations by a logarithmic func-
tion allows us to save several order of magnitudes in terms
of running time.

4.1.1 Finding All Minimal Densest Subgraphs
Armed with an efficient algorithm for finding minimal

densest subgraphs, we now present an algorithm that com-
putes all such graphs. Our algorithm computes at each step
a minimal densest subgraph by running Algorithm 3, it re-
moves all its nodes and edges from the current graph and

Algorithm 4 FindAllMinimal(V)

1: Input: Graph G = (V,E).
2: Output: Returns a list L of all minimal densest sub-

graphs.
3: L := ∅
4: while (true) do

5: Ĥ = FindMinimal(G)

IF Ĥ is not a densest subgraph break;

6: L := L ∪ {Ĥ}
7: remove all nodes and edges incident to Ĥ from G
8: end while
9: return L

iterates until no densest subgraph can be found. A pseu-
docode is shown in Algorithm 4.
Minimal densest subgraphs must be disjoint, for other-

wise, their intersection would be a densest subgraph (from
Corollary 4.1), which would contradict the fact that they
are minimal. Lemma 4.5 then follows.

Lemma 4.5 Given an undirected graph G = (V,E), our
algorithm FindAllMinimal(V) finds all minimal densest
subgraphs in G.

4.2 Main Algorithms
Drawing inspiration from the theory and the techniques

developed in the previous section for finding minimal dens-
est subgraphs, we devise one algorithm for our main prob-
lem (k, α)-DSLO. In this case, we face the additional chal-
lenge of taking full advantage of the overlap between the
subgraphs.
Our algorithm is inspired by FindMinimal and proceeds

as follows. At each step i, we compute a minimal densest
subgraph Gi = (Vi, Ei) of our current graph G = (V,E) and
we remove d(1−α)|Vi|e nodes (and their edges) from V . We
remove those nodes that are not well connected with nodes
outside Gi, as they will contribute less to the total density
in the next steps of the algorithm. Formally, for any node v
in Vi let ∆G(v) be the set of neighbors of v in G. We remove
the d(1−α)e|Vi| nodes (and their edges) with minimum value
|∆G(v) \ Vi|. We iterate until k subgraphs are found or the
current graph becomes empty. Observe that the constraint
on the Jaccard coefficient is not violated. A pseudocode of
our algorithm is shown in Algorithm 5.
We can prove an interesting property ofMinAndRemove.

Observe that if there are k disjoint densest subgraphs in G
then MinAndRemove would return the same solution of
FindAllMinimal. Then, our main theorem follows from
Lemma 4.5.

Theorem 4.1 If there are k disjoint densest subgraphs in
the input graph G, then MinAndRemove computes an op-
timum solution for (k, α)-DSLO, for any α ≥ 0.

Although, we cannot give any guarantee for the general
case of (k, α)-DSLO (i.e. for any α ≥ 0) we show the ef-
fectiveness of our main algorithm in our experimental eval-
uation. In particular, we are able to derive an upper bound
on any optimum solution for (k, α)-DSLO and show that
MinAndRemove is very close to such an upper bound in
our experiments (up to a factor of 0.9).

Finally, we present a fast heuristic FastDSLO for finding
dense subgraphs with limited overlap. Our heuristic com-
putes at each step i a 2-approximation solution Gi to the
densest subgraph problem using the greedy algorithm pre-
sented in [9]. Then, similarly to MinAndRemove d(1 −
α)e|Vi| nodes are removed from the current graph so to sat-
isfy the requirement on the pairwise Jaccard coefficient. A
pseudocode is shown in Algorithm 6. Our experimental eval-
uation shows that although our heuristic is less accurate
than MinAndRemove, it is still not too far from an opti-
mum solution while it can handle graphs with more than
100 million edges within a few hours.

Algorithm 5 MinAndRemove(G, k, α)

1: Input: A graph G = (V,E), an integer k > 0, α ∈ [0, 1]
2: Output: A list L of at most k subgraphs of G, Gi =

(Vi, Ei), s.t. the constraint on the pairwise Jaccard co-
efficient on the Vi’s is not violated (Equation (1)).

3: L := ∅
4: while < k subgraphs are found and G is not empty do
5: Find a minimal densest subgraph Gi = (Vi, Ei) of G

by running Algorithm 3
6: L := L ∪ {Gi}
7: For each node v in Vi, let ∆G(v) be the set of neighbors

of v in G.
8: Remove the d(1 − α)|Vi|e nodes with minimum value

|∆H(v) \ Vi| and all their edges from G.
9: end while
10: return L

Algorithm 6 FastDSLO(G, k, α)

1: Input: A graph G = (V,E), an integer k > 0, α ∈ [0, 1]
2: Output: A list L of at most k subgraphs of G, Gi =

(Vi, Ei), s.t. the constraint on the pairwise Jaccard co-
efficient on the Vi’s is not violated (Equation (1)).

3: L := ∅
4: while < k subgraphs are found and G is not empty do
5: Find a 2-approximation solution Gi = (Vi, Ei) to the

densest subgraph problem by running the greedy al-
gorithm in [9].

6: L := L ∪ {Gi}
7: For each node v in Vi, let ∆G(v) be the set of neighbors

of v in G.
8: Remove the d(1 − α)|Vi|e nodes with minimum value

|∆H(v) \ Vi| and all their edges from G.
9: end while
10: return L

5. EXPERIMENTS
We perform our experimental evaluation on a Linux server

with Intel Xeon E7-4870 at 2.40GHz, while limiting the total
amount of main memory available to 64 GB. We solve linear
programs with the Gurobi Optimizer version 5.6.3. All our
algorithms are implemented in Java.
We consider 8 datasets in total grouped according to their

size1. We ignore the direction of the edges in the directed
graphs, as it is irrelevant to our purposes. Most of our ex-
periments are conducted on the datasets that contain up to
11 million edges, as illustrated in Table 1. We refer to this
set of datasets as large datasets.

Name Nodes Edges Description
web-Stanford 281K 1.9M Hyperlink network
com-Youtube 1.1M 3M Social network
web-Google 875K 4.3M Hyperlink network
Youtube-growth 3.2M 9.3M Social network
As-Skitter 1.69M 11M Internet topology

Table 1: Large real-world datasets.

The second group of datasets consists of very large datasets
containing up to more than 100 million edges where we eval-
uate our fast heuristic. In Table 2 we specify all the details
for this group of datasets. We refer to this set of datasets
as very large datasets.

Name Nodes Edges Description
Live Journal 4.8M 43M Social network
Hollywood-2009 1.1M 57M Social network
Orkut 3M 117M Social network

Table 2: Very large real-world datasets.

We evaluate our algorithm MinAndRemove against two
variants of the Naive algorithm. In the first variant we
compute at each step a densest subgraph with the LP-based
approach proposed in [9], we remove all its nodes and edges
from the graph, and we iterate until k subgraphs have been
found or the graph has become empty. We refer to this algo-
rithm as NaiveDensest. In the second variant we compute
at each step the 1

2
-approximation algorithm proposed in [9]

instead of a densest subgraph. We refer to this algorithm
as NaiveGreedy. The reason to consider also this second
variant is that the 1

2
-approximation algorithm is much faster

than the LP-based optimal approach.
We tested NaiveDensest on the large datasets and it did

not terminate after 16 hours of computation on any dataset.
We also evaluated the maximum flow algorithm proposed
in [15], which turned out to be even slower. Therefore, in the
rest of the experimental evaluation we focus on evaluating
MinAndRemove against NaiveGreedy.
We start by measuring the total density when k = 10,

while varying α between 0.1 and 0.5. Let ρmax be the density
of a densest subgraph in the input graph. Observe that
k·ρmax gives us an upper bound on the value of any optimum
solution for (k, α)-DSLO, for any value of α. Therefore, we
can use such an upper bound to give an idea of how close our
results are to an optimum solution. Given that we use only

1Sources: snap.stanford.edu , konect.uni-koblenz.de,
law.di.unimi.it/datasets.php

an upper bound, clearly, our results might be even closer to
the actual optimum solution.

In Table 3, we measure the ratio between the total den-
sity computed by our main algorithm and our upper bound,
when k = 10. We can see that in all cases our algorithm
yields a solution that is at least within a factor of 0.44 of the
value of an optimum solution, while in many cases it yields
an approximation factor of 0.8 (meaning that it reaches the
80% of the upper bound on the optimum objective-function
value). We can also see that the quality of the solution in-
creases as a function of α showing that our algorithm takes
full advantage of the overlap between the subgraphs. This is
not the case for one dataset only (web − Google), however,
we observe that the results are already very good for this
dataset when α = 0.1, making it harder to improve upon
such a solution. We also recall that our upper bound might
be loose and that we might have computed an optimum so-
lution for such a dataset.

Next, we evaluate our algorithm MinAndRemove against
NaiveGreedy, when k = 10. Table 4 shows the ratio
between the total density of the subgraphs found by our
algorithm and those of NaiveGreedy. We can see that
in most cases MinAndRemove yields a solution that is
a factor of 1.5 larger than that of MinAndRemove, and
always at least 10% denser. We expect that the advan-
tage of MinAndRemove against NaiveGreedy would be
even more remarkable for larger values of k. Table 5 shows
the total running time of our algorithm, which is always
at most 3.2 hours, while in many cases is as less as 30
mins. We recall that instead the basic LP-based approach
by Charikar [9] could not terminate after 16 hours of compu-
tation on any of the selected datasets. On the other hand, as
expected, NaiveGreedy is faster than our method. How-
ever, NaiveGreedy does not ensure optimality in finding
the densest subgraph at each step, and this results in con-
sistently less dense solutions.

In Table 6, we set α = 0.3 and we measure the ratio be-
tween the density of MinAndRemove and an upper bound
to any optimum solution as a function of k. We can see that
when k is at most 4 our solution is very close to an optimum
solution for (k, α)-DSLO (up to a factor of 0.9). For larger
values of k, our solution is still within a factor of 1/2 of an
optimum solution or better. This might depend on the fact
that our upper bound becomes loose when k is large.

We then evaluate the impact of computing at each step
minimal densest subgraphs in MinAndRemove, as opposed
to computing densest subgraphs. We perform the follow-
ing experiment. Starting from the input graph, we remove
at each step minimal densest subgraphs until the current
graph is left with no edges. We then perform a similar ex-
periment where at each step (possibly non-minimal) densest
subgraphs are removed from the current graph. Our experi-
ments show (which are omitted for lack of space) that in the
former case we gain a factor of 1% (on average) in the to-
tal density, which is significant given that MinAndRemove
might deliver near-optimal solutions. We also observe that
all our datasets contain at most one densest subgraph. This
fact could not be verified prior to our work.

Our experimental evaluation shows thatMinAndRemove
can handle large graphs containing up to more than 10
million edges within 3 hours or less, while delivering near-
optimal solutions for our problem. For even larger graphs
we resort to our fast heuristic which is evaluated on graphs

k = 10 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5
web-Stanford .717 .738 .767 .790 .816
com-Youtube .480 .521 .518 .613 .623
web-Google .808 .808 .808 .808 .808
Youtube-growth .440 .467 .538 .593 .579
As-Skitter .585 .597 .599 .625 .647

Table 3: Ratio between the density of MinAndRemove and our upper bound

k = 10 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5
web-Stanford 1.469 1.512 1.570 1.617 1.671
com-Youtube 1.192 1.293 1.287 1.522 1.547
web-Google 1.595 1.595 1.595 1.595 1.595
Youtube-growth 1.2 1.271 1.467 1.617 1.578
As-Skitter 1.125 1.147 1.151 1.202 1.244

Table 4: Ratio between the density of MinAndRemove and NaiveGreedy

k = 10 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5
web-Stanford 0.3h 0.21h 0.21h 0.23h 0.21h
com-Youtube 0.54h 0.54h 0.63h 0.55h 0.47h
web-Google 2.15h 2.31h 2.31h 2.12h 2.73h
Youtube-growth 1.5h 1.74h 2.19h 1.8h 3.13h
As-Skitter 1.29h 1.47h 2.85h 2.53h 1.78h

Table 5: Running time when varying α for MinAndRemove

α = 0.3 k = 2 k = 4 k = 6 k = 8 k = 10
web-Stanford .991 .914 .858 .808 .767
com-Youtube .840 .744 .638 .570 .518
web-Google .991 .915 .863 .836 .808
Youtube-growth .845 .738 .664 .593 .538
As-Skitter .914 .783 .693 .641 .599

Table 6: Ratio between the density of MinAndRemove and our upper bound

containing up to more than 100 million edges. Similarly to
the previous case, we can derive an upper bound on the op-
timum solution as a function of the densest subgraph found
by our heuristic. Namely, let ρA be the density of the dens-
est subgraph found by FastDSLO (which we recall is a 2-
approximation for the densest subgraph problem). Then,
2k · ρA gives an upper bound to any optimum solution for
(k, α)-DSLO.
In Table 7, we set k = 10 while we measure the ratio

between the density of FastDSLO and an upper bound to
any optimum solution, as a function of α. Although our
heuristic turns out to be less accurate thanMinAndRemove
it delivers solutions with an approximation factor of around
0.2 or more, while it can handle very large graphs with more
than 100 million edges within a few hours. We also observe
that our upper bound might be even looser in this case, as
it is based on an approximation of the density of a densest
subgraph. Table 8 show the running time of FastDSLO
when k = 10 and α varies between 0.1 and 0.5. We can
observe that the running time is around half an hour for
the smaller datasets and does not exceed 2.3 hours on the
largest dataset (Orkut).

6. CONCLUSIONS
This paper studies the problem of finding at most k sub-

graphs from a large graph given in input such that the to-

tal density be maximized, while satisfying a constraint on
the pairwise Jaccard coefficient between the subgraphs. Al-
though very natural, this variant of the densest subgraph
problem has been surprisingly neglected so far.

After showing the NP-hardness of this problem (even when
the subgraphs are disjoint), we develop an algorithm that
computes an optimum solution for our problem in the case
when there are k disjoint densest subgraphs in the input
graph. Moreover, our experimental evaluation on large real-
world graphs shows that our algorithm delivers near-optimal
solutions, in that, they are very close to an upper bound on
any optimum solution.

We introduce the concept of minimality of densest sub-
graphs and develop efficient algorithms for finding minimal
densest subgraphs, which play an important role in solv-
ing our main problem. It turns out that our algorithm for
finding minimal densest subgraphs is the fastest known al-
gorithm for the exact computation of a densest subgraph, as
shown by our experimental evaluation. We presented an ef-
ficient heuristic for our problem which, albeit less accurate,
can handle graphs containing up to 100 million edges.

We will devote our future investigation to devise even
more scalable algorithms and to adapt our algorithm into
a dynamic environment, where edges might be added to the
current graph or removed. Another interesting direction is
to determine whether finding minimal densest subgraphs can

k = 10 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5
LiveJournal .244 .245 .251 .285 .276
Hollywood-2009 .187 .190 .199 .210 .231
Orkut .187 .200 .218 .249 .271

Table 7: Ratio between the density of FastDSLO and our upper bound

k = 10 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5
LiveJournal 0.56h 0.52h 0.63h 0.54h 0.54h
Hollywood-2009 0.34h 0.3h 0.33h 0.37h 0.34h
Orkut 1.97h 2.15h 1.2h 2.16h 2.26h

Table 8: Running time of FastDSLO on very large datasets as a function of α

be a valuable tool in finding interesting patterns in social
networks and other real-world graphs.

7. REFERENCES
[1] R. Andersen and K. Chellapilla. Finding dense

subgraphs with size bounds. In WAW, 2009.

[2] A. Angel, N. Sarkas, N. Koudas, and D. Srivastava.
Dense subgraph maintenance under streaming edge
weight updates for real-time story identification.
PVLDB, 5(6), 2012.

[3] A. Angel, N. Sarkas, N. Koudas, and D. Srivastava.
Dense subgraph maintenance under streaming edge
weight updates for real-time story identification.
PVLDB, 5(6), 2012.

[4] Y. Asahiro, R. Hassin, and K. Iwama. Complexity of
finding dense subgraphs. Discr. Ap. Math., 121(1-3),
2002.

[5] Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama.
Greedily finding a dense subgraph. J. Algorithms,
34(2), 2000.

[6] B. Bahmani, R. Kumar, and S. Vassilvitskii. Densest
subgraph in streaming and mapreduce. PVLDB, 5(5),
2012.

[7] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and
A. Vijayaraghavan. Detecting high log-densities: an

O(n1/4) approximation for densest k -subgraph. In
STOC, pages 201–210, 2010.

[8] F. Bonchi, F. Gullo, A. Kaltenbrunner, and
Y. Volkovich. Core decomposition of uncertain graphs.
In KDD, 2014.

[9] M. Charikar. Greedy approximation algorithms for
finding dense components in a graph. In K. Jansen
and S. Khuller, editors, APPROX. Springer, 2000.

[10] J. Chen and Y. Saad. Dense subgraph extraction with
application to community detection. TKDE, 24(7),
2012.

[11] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang.
Online search of overlapping communities. In
SIGMOD, 2013.

[12] X. Du, R. Jin, L. Ding, V. E. Lee, and J. H. Thornton,
Jr. Migration motif: a spatial - temporal pattern
mining approach for financial markets. In KDD, 2009.

[13] E. Fratkin, B. T. Naughton, D. L. Brutlag, and
S. Batzoglou. MotifCut: regulatory motifs finding
with maximum density subgraphs. In ISMB, 2006.

[14] D. Gibson, R. Kumar, and A. Tomkins. Discovering

large dense subgraphs in massive graphs. In VLDB,
2005.

[15] A. V. Goldberg. Finding a maximum density
subgraph. Technical report, University of California at
Berkeley, 1984.

[16] S. Khot. Ruling out PTAS for graph min-bisection,
dense k-subgraph, and bipartite clique. J. Computing,
36(4), 2006.

[17] S. Khuller and B. Saha. On finding dense subgraphs.
In ICALP, 2009.

[18] M. A. Langston and et al. A combinatorial approach
to the analysis of differential gene expression data:
The use of graph algorithms for disease prediction and
screening. In Methods of Microarray Data Analysis IV.
2005.

[19] V. E. Lee, N. Ruan, R. Jin, and C. C. Aggarwal. A
survey of algorithms for dense subgraph discovery. In
Managing and Mining Graph Data. 2010.

[20] C. H. Papadimitriou and M. Yannakakis.
Optimization, approximation, and complexity classes.
J. Comput. Syst. Sci., 43(3), 1991.

[21] M. Sozio and A. Gionis. The community-search
problem and how to plan a successful cocktail party.
In KDD, pages 939–948, 2010.

[22] N. Tatti and A. Gionis. Discovering nested
communities. In ECML/PKDD (2), 2013.

[23] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and
M. Tsiarli. Denser than the densest subgraph:
Extracting optimal quasi-cliques with quality
guarantees. In KDD, 2013.

[24] E. Valari, M. Kontaki, and A. N. Papadopoulos.
Discovery of top-k dense subgraphs in dynamic graph
collections. In SSDBM, 2012.

[25] N. Wang, J. Zhang, K.-L. Tan, and A. K. H. Tung. On
triangulation-based dense neighborhood graph
discovery. PVLDB, 4(2), 2010.

