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Apache Hadoop

Apache Hadoop

Apache Hadoop - open source software framework for distributed storage
and processing of large data sets on clusters of computers.

The framework is designed to scale from a single computer to thousands of
computers, using the computational power and storage of each machine.

Fun fact: Hadoop is a made-up name, given by the son of Doug Cutting
(the project’s creator) to a yellow stuffed elephant.
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Apache Hadoop

Apache Hadoop

What was the motivation behind the creation of the framework?

When dealing with ”big data”, each application has to solve common
issues:

• storing and processing large datasets on a cluster of computers

• handling computer failures in a cluster

Solution: have an efficient library that solves these problems!
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Apache Hadoop

Apache Hadoop

The modules of the framework are:

• Hadoop Common: common libraries shared between the modules

• Hadoop Distributed File System: storage of very large datasets in a
reliable fashion

• Hadoop YARN: framework for the application management in a
cluster

• Hadoop MapReduce: programming model for processing large data
sets.
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The Hadoop Distributed File System(HDFS)

Hadoop Distributed File System(HDFS). Key Concepts:

Data storage: blocks. A block is a group of sectors (region of fixed size on
a formatted disk). A block has the size a multiple of the sector’s size and it
is used to deal with bigger hard drives.

Unix like system: blocks of a few KB .

HDFS: blocks of 64/128 MB are stored on computers called DataNodes.
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Hadoop Distributed File System(HDFS). Key Concepts:

Data storage: blocks. A block is a group of sectors (region of fixed size on
a formatted disk). A block has the size a multiple of the sector’s size and it
is used to deal with bigger hard drives.

Unix like system: blocks of a few KB .

HDFS: blocks of 64/128 MB are stored on computers called DataNodes.

File system metadata : inode. An inode is a data structure that contains
information about files and directories (file ownership, access mode, file
type, modification and access time).

Unix like system: inode table.

HDFS : NameNode - one/several computers that store inodes.

Data integrity.

Unix like system: checksum verification of metadata .

HDFS: maintaining copies of the data (replication) on several datanodes and
performing checksum verification of all data.
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Hadoop Distributed File System(HDFS). Goals:

• to deal with hardware failure

X data is replicated on several machines
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we always read at least 64/128 MB). However big blocks allow fast
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Hadoop Distributed File System(HDFS). Goals:

• to deal with hardware failure

X data is replicated on several machines

• to provide a simple data access model

X the data access model is write-once read-many-times, allowing
concurrent reads of data

• to provide streaming data access

X the large size of blocks makes HDFS unfit for random seeks in files (as
we always read at least 64/128 MB). However big blocks allow fast
sequential reads, optimizing HDFS for a fast streaming data access
(i.e. low latency in reading the whole dataset)

• to manage large data sets

X HDFS can run on clusters of thousands of machines, proving huge
storage facilities
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The Hadoop Distributed File System(HDFS)

Hadoop Distributed File System(HDFS)

Source image: http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
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Application management in the cluster

Old framework: MapReduce 1. Key Concepts

• JobTracker is the master service that sends MapReduce computation tasks
to nodes in the cluster.

• TaskTrackers are slave services on nodes in the cluster that perform
computation (Map, Reduce and Shuffle operations).

An application is submitted for execution:

X JobTracker queries NameNode for the location of the data needed

X JobTracker assigns computation to TaskTracker nodes with available
computation power or near the data

X JobTracker monitors TaskTracker nodes during the job execution
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Application management in the cluster

Old framework: MapReduce 1

Source image:

http://hortonworks.com/wp-content/uploads/2012/08/MRArch.png
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Application management in the cluster

New framework: MapReduce 2 (YARN). Key Concepts

The functionalities of the JobTracker are divided between different components:

• ResourceManager: manages the resources in the cluster

• ApplicationMaster: manages the life cycle of an application

An application is submitted for execution:

X the ResourceManager will allocate a container (cpu, ram and disk) for the
ApplicationMaster process to run

X the ApplicationMaster requests containers for each map/reduce task

X the ApplicationMaster starts the tasks by contacting the NodeManagers (a
daemon responsible for per node resource monitoring; it reports to the
Resource Manager)

X the tasks report the progress to the ApplicationMaster
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Application management in the cluster

New framework: MapReduce 2(YARN)

Source image:

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/y
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Hadoop MapReduce

Hadoop MapReduce

In order to perform computation on a large dataset we need a programming model
that can easily be parallelized. This is the case for the MapReduce model.

In MapReduce the computation is split into two task: the map task and the

reduce task.

Source image:

http://blog.cloudera.com/wp-content/uploads/2014/03/ssd1.png
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Coding using Apache Hadoop

Counting the number of occurence of words

Problem. Suppose that we have a huge log file (or several huge log files)
representing user queries on Google in the last week. We want to count the
number of appearances of the words used. The files are stored on the HDFS.
Example:

q1: When did the syrian civil war start?
q2: How many syrian refugees are?
...
q10000000000000: How can I become a cat?

Solution. We will write an application in Java that uses the Apache Hadoop
framework.

The first notion that we need to get familiar is the one of a job. A MapReduce
job is an application that processes data via map and reduce tasks.
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Coding using Apache Hadoop

WordCount.java
Lines 1–29 / 59

1 import j a v a . i o . IOExc ept i on ;
2 import j a v a . u t i l . S t r i n gTok e n i z e r ;
3 import org . apache . hadoop . c on f . C on f i g u r a t i o n ;
4 import org . apache . hadoop . f s . Path ;
5 import org . apache . hadoop . i o . I n tW r i t a b l e ;
6 import org . apache . hadoop . i o . Text ;
7 import org . apache . hadoop . mapreduce . Job ;
8 import org . apache . hadoop . mapreduce . Mapper ;
9 import org . apache . hadoop . mapreduce . Reduce r ;

10 import org . apache . hadoop . mapreduce . l i b . i n pu t . F i l e I n pu t Fo rma t ;
11 import org . apache . hadoop . mapreduce . l i b . output . F i l eOutputFormat ;
12
13 pub l i c c l a s s WordCount {
14 pub l i c s t a t i c c l a s s Tokeni ze rMapper
15 extends Mapper<Object , Text , Text , I n tW r i t a b l e>{
16
17 p r i v a t e f i n a l s t a t i c I n tW r i t a b l e one = new I n tW r i t a b l e ( 1) ;
18 p r i v a t e Text word = new Text ( ) ;
19
20 pub l i c vo i d map( Objec t key , Text va lue , Context c ont e x t
21 ) throws IOExcept ion , I n t e r r u p t e dE x c e p t i o n {
22 S t r i n gTok e n i z e r i t r = new S t r i n gTok e n i z e r ( v a l u e . t o S t r i n g ( ) ) ;
23 wh i l e ( i t r . hasMoreTokens ( ) ) {
24 word . s e t ( i t r . nextToken ( ) ) ;
25 conte x t . w r i t e (word , one ) ;
26 }
27 }
28 }
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Coding using Apache Hadoop

WordCount.java
Lines 30–58 / 59

30 pub l i c s t a t i c c l a s s IntSumReducer
31 extends Reducer<Text , I n tW r i t a b l e , Text , I n tW r i t a b l e> {
32 p r i v a t e I n tW r i t a b l e r e s u l t = new I n tW r i t a b l e ( ) ;
33
34 pub l i c vo i d r e duc e ( Text key , I t e r a b l e<I n tW r i t a b l e> va l ue s ,
35 Context c ont e x t
36 ) throws IOExcept ion , I n t e r r u p t e dE x c e p t i o n {
37 i n t sum = 0;
38 f o r ( I n tW r i t a b l e v a l : v a l u e s ) {
39 sum += va l . ge t ( ) ;
40 }
41 r e s u l t . s e t ( sum) ;
42 conte x t . w r i t e ( key , r e s u l t ) ;
43 }
44 }
45 pub l i c s t a t i c vo i d main ( S t r i n g [ ] a r g s ) throws Exc ept i on {
46 Con f i g u r a t i o n con f = new Con f i g u r a t i o n ( ) ;
47 Job job = Job . g e t I n s t a n c e ( conf , ”word count ” ) ;
48 j ob . s e tMappe rC l a s s ( Tokeni ze rMapper . c l a s s ) ;
49 j ob . s e tComb i ne rC l a s s ( IntSumReducer . c l a s s ) ;
50 j ob . s e tR e du c e rC l a s s ( IntSumReducer . c l a s s ) ;
51 j ob . s e tOutputKeyC l a s s ( Text . c l a s s ) ;
52 j ob . s e tOutputVa l ueC l a s s ( I n tW r i t a b l e . c l a s s ) ;
53 F i l e I n pu t Fo rma t . addInputPath ( job , new Path ( a rgs [ 0 ] ) ) ;
54 Fi l eOutputFormat . se tOutputPath ( job , new Path ( a rgs [ 1 ] ) ) ;
55 j ob . s e t I n pu tFo rma tC l a s s ( Text InputFormat . c l a s s ) ;
56 j ob . s e tOutputFormatC l a s s ( TextOutputFormat . c l a s s ) ;
57 j ob . wa i tFo rComp l e t i on ( t r ue ) ;
58 }
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Coding using Apache Hadoop

The Job Class. Steps to initialize a job:

• provide a configuration of the cluster:

46 Con f i g u r a t i o n con f = new Con f i g u r a t i o n ( ) ;

• call the constructor with the configuration object and a name for the job

47 Job job = Job . g e t I n s t a n c e ( conf , ”word count ” ) ;

• provide an implementation for the Map Class

48 job . s e tMappe rC l a s s ( Tokeni ze rMapper . c l a s s ) ;

• provide an implementation for the Combiner Class

49 job . s e tComb i ne rC l a s s ( IntSumReducer . c l a s s ) ;

• provide an implementation for the Reduce Class

50 job . s e tR e du c e rC l a s s ( IntSumReducer . c l a s s ) ;
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Coding using Apache Hadoop

The Job Class. Steps to initialize a job:

• specify the type of the output key/value

51 job . s e tOutputKeyC l a s s ( Text . c l a s s ) ;
52 j ob . s e tOutputVa l ueC l a s s ( I n tW r i t a b l e . c l a s s ) ;

• give the location of the input/output of the application

53 F i l e I n pu tFo rma t . addInputPath ( job , new Path ( a rgs [ 0 ] ) ) ;
54 Fi l eOutputFormat . se tOutputPath ( job , new Path ( a rgs [ 1 ] ) ) ;

• specify how the input/output will be formatted

55 job . s e t I n pu tFo rma tC l a s s ( Text InputFormat . c l a s s ) ;
56 j ob . s e tOutputFormatC l a s s ( TextOutputFormat . c l a s s ) ;

• the last step: start the job and wait for its completion!

57 job . wa i tFo rComp l e t i on ( t r ue ) ;
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Coding using Apache Hadoop

The Configuration Class.
Setting the environment for a job.

Using the Configuration Class we can configure the components of Hadoop,
through pairs of (property, value). For example:

• configurations for NameNode: property dfs.namenode.name.dir (path on the
local filesystem where the NameNode stores its information), property
dfs.blocksize (size of a block on the HDFS)

Example:

conf.setInt(’dfs.blocksize’, 268435456) - setting the block size to 256 MB

• configurations for the MapReduce applications: property
mapreduce.map.java.opt (larger heap size for the jvm of the maps)

A user can add new properties that are needed for a job, before the job is
submitted. During the execution of the job, properties are read only.
Default values for the properties are stored in XML files on the namenode and
datanodes.
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Coding using Apache Hadoop

Input format of a job

The input of a job is processed by the map function. All classes used to format
the input must implement the interface InputFormat.

TextInputFormat splits a block of data into lines and sends to the map function
one line at the time. Because a map function works with pairs of (key, value),
these will be:

• key: byte offset of the position where the line starts

• value: the text of the line.

KeyValueTextInputFormat splits a block of data into lines. It then performs an
additional split of each line (the second split looks for a given separator):

• key: the text before a separator (comma, tab, space)

• value: the text after the separator
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Coding using Apache Hadoop

Output format of a job

The output of a job is written to the file system by the reduce function. All
classes used to format the output must implement the interface OutputFormat.

One important functionality provided is checking that the output does not exist

(remember the data access mode is write-once read-many-times).

TextOutputFormat takes an output pair (key,value), converts the key and value
to strings and writes them on one line: string(key) separator string(value) endl
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Coding using Apache Hadoop

Data types optimized for network communication

We often want to send objects over the network or to write them on the disk. For
consistency reasons, programmers use the same libraries to serialize and
deserialize objects.

Serialization is the process of transforming objects into a sequence of bytes.
Deserialization is the process of transforming a sequence of bytes into objects.

In Apache Hadoop a new standard for serialization/deserialization was
introduced: Writable. The new format is designed to be more compact, to
improve random access and sorting of the records in the stream.

map : (K1,V 1) → list(K2,V 2)
reduce : (K2, list(V 2)) → list(K3,V 3)
K1-K3, V1-V3 are replaced with Writable types
(LongWritable, DoubleWritable, NullWritable..)
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Coding using Apache Hadoop

Mapper Class

The framework provides a default Mapper Class.

1 pub l i c c l a s s Mapper<KEYIN , VALUEIN , KEYOUT, VALUEOUT> {
2 /∗∗ Ca l l e d once f o r each key / v a l u e p a i r i n the i n pu t s p l i t . Most a p p l i c a t i o n s
3 ∗ shou l d o v e r r i d e t h i s , but the d e f a u l t i s the i d e n t i t y f u n c t i o n . ∗/
4 p rotec ted vo i d map(KEYIN key , VALUEIN value ,
5 Context c ont e x t ) throws IOExcept ion , I n t e r r u p t e dE x c e p t i o n {
6 conte x t . w r i t e ( (KEYOUT) key , (VALUEOUT) va l u e ) ;
7 }
8 }

Any class that will be used as a Mapper class has to be a subclass of the default
class. Most applications need to override the map function.

14 pub l i c s t a t i c c l a s s Tokeni ze rMapper
15 extends Mapper<Object , Text , Text , I n tW r i t a b l e>{
16
17 p r i v a t e f i n a l s t a t i c I n tW r i t a b l e one = new I n tW r i t a b l e ( 1) ;
18 p r i v a t e Text word = new Text ( ) ;
19
20 pub l i c vo i d map( Objec t key , Text va lue , Context c ont e x t
21 ) throws IOExcept ion , I n t e r r u p t e dE x c e p t i o n {
22 S t r i n gTok e n i z e r i t r = new S t r i n gTok e n i z e r ( v a l u e . t o S t r i n g ( ) ) ;
23 wh i l e ( i t r . hasMoreTokens ( ) ) {
24 word . s e t ( i t r . nextToken ( ) ) ;
25 conte x t . w r i t e (word , one ) ;
26 }
27 }
28 }
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Coding using Apache Hadoop

Reducer Class

The framework provides a default Reducer Class.
1 pub l i c c l a s s Reducer<KEYIN ,VALUEIN ,KEYOUT,VALUEOUT> {
2 /∗∗ Thi s method i s c a l l e d once f o r each key . Most a p p l i c a t i o n s w i l l d e f i n e
3 ∗ t h e i r r e duc e c l a s s by o v e r r i d i n g t h i s method . The d e f a u l t imp l ementa t i on
4 ∗ i s an i d e n t i t y f u n c t i o n . ∗/
5 p rotec ted vo i d r e duc e (KEYIN key , I t e r a b l e<VALUEIN> va l ue s , Context c ont e x t
6 ) throws IOExcept ion , I n t e r r u p t e dE x c e p t i o n {
7 f o r (VALUEIN va l u e : v a l u e s ) {
8 conte x t . w r i t e ( (KEYOUT) key , (VALUEOUT) va l u e ) ;
9 }

10 }
11 }

Any class that will be used as a Reducer class has to be a subclass of the default
class. Most applications need to override the reduce function.

30 pub l i c s t a t i c c l a s s IntSumReducer
31 extends Reducer<Text , I n tW r i t a b l e , Text , I n tW r i t a b l e> {
32 p r i v a t e I n tW r i t a b l e r e s u l t = new I n tW r i t a b l e ( ) ;
33
34 pub l i c vo i d r e duc e ( Text key , I t e r a b l e<I n tW r i t a b l e> va l ue s ,
35 Context c ont e x t
36 ) throws IOExcept ion , I n t e r r u p t e dE x c e p t i o n {
37 i n t sum = 0;
38 f o r ( I n tW r i t a b l e v a l : v a l u e s ) {
39 sum += va l . ge t ( ) ;
40 }
41 r e s u l t . s e t ( sum) ;
42 conte x t . w r i t e ( key , r e s u l t ) ;
43 }
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Coding using Apache Hadoop

Context Class

A Context Object provides a view of the job in the Mapper/Reducer. Some
important functionalities:

• write objects in a map/reduce function

context.write(key, new IntWritable(sum));

• access the Configuration object

Configuration conf = context.getConfiguration();

int nNodes = conf.getInt(’numberNodes’, 0);

• but also other functionalities: context.getFileTimestamps(),
context.getInputFormatClass(), context.getJobID(),
context.getNumReduceTasks() ...
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Coding using Apache Hadoop

Counter Class. Gathering statistics about the job.

During the execution of a job, there is no direct communication between map and
reduce tasks. However, these tasks keep a constant communication with the
ApplicationMaster in order to report progress. The communication is done
through objects of the class Counter.

Built-in Counters

MAP INPUT RECORDS
MAP OUTPUT RECORDS
MAP OUTPUT RECORDS
REDUCE OUTPUT RECORDS
...
User-Defined Java Counters

Each time the desired event occurs (a record is read/written or others), the
counter is incremented (locally). The aggregation of the information is performed
by the ApplicationMaster.
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Coding using Apache Hadoop

Counter Class. Gathering statistics about the job.

The default value of a Counter is 0. Incrementing a counter in a
Map/Reduce function :

1 pub l i c vo i d map( Objec t key , Text va lue , Context c ont e x t )
2 throws IOExcept ion , I n t e r r u p t e dE x c e p t i o n {
3 . . .
4 Counte r c = conte x t . ge tCounte r ( myCounters .NUMNODES) ;
5 c . i nc r ement ( 1) ;
6 }

Retrieving the value of a counter of the end of a job:

1 job . wa i tFo rComp l e t i on ( t r ue ) ;
2 Counte rs c oun t e r s = job . ge tCounte r s ( ) ;
3 Counte r c = c oun t e r s . f i n dCoun t e r ( myCounters .NUMNODES) ;
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Coding using Apache Hadoop

For more insight about Apache Hadoop

T Hadoop: The Definitive Guide, Tom White

&&

hands-on approach: coding :)
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