
Finding Heaviest k-Subgraphs
and Events in Social Media

Matthaios Letsios
Institut Mines Telecom, Telecom Paristech

letsiosm@gmail.com

Oana Denisa Balalau
Institut Mines Telecom, Telecom Paristech

balalau@telecom-paristech.fr

Maximilien Danisch
Institut Mines Telecom, Telecom Paristech

danisch@telecom-paristech.fr

Emmanuel Orsini
Google Inc., Zurich

emmanuel.orsini@polytechnique.edu

Mauro Sozio
Institut Mines Telecom, Telecom Paristech

sozio@telecom-paristech.fr

Abstract—In recent years, social media have become a useful
tool to stay in contact with friends, to share thoughts but also
to be informed about events. Users can follow news channels,
but they can be the ones reporting updates, which distinguishes
social media from traditional media. In this paper, we use a
graph mining approach for finding events in a graph constructed
starting from posts of users. We develop an exact algorithm for
solving the heaviest k-subgraph problem which is an NP-hard
problem. Our experimental analysis on large real-world graphs
shows that our algorithm is able to compute the exact solutions
for k up to 15 or more depending on the structure of the graph.
We also develop an approximation version of our algorithm
scaling to larger k. In comparison, for this setting, the classical
heuristic based on weighted core decomposition only leads to
sub-optimal solutions. Finally, we show that our algorithm can
be used to find relevant events in Twitter. Indeed, as an event is
usually described by a small number of words, our algorithm is
a useful tool to detect them.

I. INTRODUCTION

There is an urgent need to develop efficient algorithms

that are able to make sense of the unprecedented amount of

data produced daily by social media users, such as users of

Facebook, Twitter, etc.

Osborne et al. [17] compared Twitter, Facebook and Google

Plus in order to determine which online social network would

offer a better coverage of world news. While all three so-

cial media perform comparably well in terms of coverage,

Osborne et al. [17] observed that in Twitter interesting news

are reported in a more timely fashion. Twitter has also the

additional advantage of providing free access to the stream of

tweets posted by the users through a streaming API. Given

these advantages, we will focus on event detection on Twitter.

Algorithms for finding dense subgraphs (i.e. subgraphs with

a relative large number of edges) have proved to be an effective

tool in data analysis with applications in community detection

[9], finding patterns in gene annotation graphs [18], link spam

detection [11], as well as event detection in social media [1].

The data is represented as an undirected weighted graph rep-

resenting the co-occurrence between relevant terms mentioned

in tweets. In such a graph, nodes represent relevant terms

(such as countries, terms such as ’earthquake’, ’shooting’,

etc.) while each edge indicates whether the two corresponding

terms co-occur together in tweets. Each edge is associated with

a positive weight measuring the number of co-occurrences of

the corresponding terms in tweets.

As events unfold, terms related to the event start to co-occur

often in tweets leading to the emergence of a dense subgraph.

The average degree of a subgraph is a widely used measure of

its density. The problem of finding a subgraph with maximum

average degree is called the densest subgraph problem and can

be solved in polynomial time using a parametric maximum

flow algorithm [12].

However, in some applications such as event detection,

densest subgraphs might be large and difficult to analyze. In

order to cope with this limitation, we consider the problem of

finding dense subgraphs under size restriction. In particular,

given a weighted graph we wish to find a subgraph with

k nodes with maximum total edge weight. This problem is

referred in the literature as the heaviest k-subgraph problem

(HkS) and also as the weighted version of the densest k-

subgraph problem. The problem is NP-hard and difficult to

approximate. In our work we leverage the properties of real-

world graphs, so as to develop efficient algorithms.

We summarize our contributions as follows.

• We develop an efficient (exact) branch and bound al-

gorithm to solve the heaviest k-subgraph problem. Our

algorithm scales to large weighted real-world networks,

for k up to 15 or more depending on the structure of the

graph. We also develop an approximated version of our

algorithm scaling to even larger values of k. We show

that our algorithms are more effective than state-of-the-

art heuristics for the same problem. Our code in C is

publicly available1.

• We show that our algorithm is better suited as a sub-

routine for solving related problems, like finding the

top t HkS in a graph. In social media, more than one

event is discussed in the same time frame, which might

correspond to several heavy subgraphs.

• We include a case study showing that HkS correspond to

relevant events in Twitter.

1https://github.com/maxdan94/HkS

2016 IEEE 16th International Conference on Data Mining Workshops

2375-9259/16 $31.00 © 2016 IEEE

DOI 10.1109/ICDMW.2016.124

113

The rest of the paper is organized as follows. In Section

II we define formally the problems we will attempt to solve,

then we present the related work concerning dense subgraph

identification applied to event detection in Section III. In Sec-

tion IV, we present our algorithms for solving the problems.

We then evaluate the performance of our algorithm to detect

events in Section V. Finally, we conclude and present future

work in Section VI.

II. PROBLEM DEFINITION

In this section, we give a formal definition of the problems

we study in our work. We also introduce necessary notations

and definitions that shall be used in the rest of the paper.

We shall assume that we are given an undirected graph G =
(V (G), E(G)) and a weight function w : E(G)→ R+.

Problem definition (Heaviest-k-Subgraph problem). Given an

undirected weighted graph G and an integer k > 1, we wish

to find a subgraph containing k nodes and such that the sum

of the weights its edges is maximum. For this problem we

assume the graph has at least k nodes.

In order to treat the problem for large k we also define an

approximate version of the problem.

Problem definition (Heaviest-k-Subgraph α-approximation
problem). Given an undirected weighted graph G, an integer

k > 1 and a real number α ≥ 1, we wish to find a subgraph

containing k-nodes and such that the sum of the weights on

its edges times α is greater or equal to the sum of the weights

on the edges of any subgraph of size k.

Problem definition (Top t heavy k-subgraphs problem). Given

an undirected weighted graph G, an integer k > 1, and an

integer t > 0, find at most t disjoint subgraphs containing

k nodes such that the sum of the weights on its edges is

maximum. For this problem we assume the graph has at least

k · t nodes.

Decomposing an unweighted graph into a hierarchical struc-

ture via the core decomposition is a standard operation in any

modern graph-mining toolkit. This decomposition, is based on

a recursive pruning of a vertex of minimum degree and is used

as a subroutine in a large variety of algorithms, in particular

it is related to the problem of finding densest subgraph (in

unweighted graph and without constraints on the number

of nodes in the subgraph) as it leads to a 2-approximation

algorithms. It can be straightforwardly generalized to the

weighted case where we recursive prune a vertex such that

the sum of the weights on its adjacent edges is minimum.

Problem definition (Weighted core decomposition problem).

Given an undirected weighted graph G, we wish to compute

a weighted core decomposition of G.

We will show that an efficient heuristic for the Heaviest-

k-Subgraph problem can be derived from the Weighted core

decomposition. However, this solution has no fixed parameter

approximation guaranteed for our setting.

III. RELATED WORK

Heaviest k-subgraph. Both HkS and DkS (unweighted

version of HkS) problems are NP-hard and no polynomial-

time algorithms with a fixed performance guarantee are

known. In [7] the authors give a polynomial algorithm that

computes a solution within a factor of nα, α < 1
3 , from the

optimum solution for DkS, with the addition of a factor of

O(log n) for HkS. Note that an algorithm that solves the

weighted case will solve the unweighted case without any

additional approximation factor. Asahiro et al. [2] describe a

greedy algorithm for HkS that has an approximation ratio of

O(kn). In [8], using semidefinite programming, the authors get

approximation ratios of k
n for HkS. The state-of-the algorithm

for DkS is due to Bhaskara et al. [3] and gives a O(n
1
4+ε)

approximation guarantee for any ε > 0. In [3], the authors

count selected subgraphs of constant size in G, and use these

counts to find the vertices of the dense subgraph.

Finding the densest subgraph with at most k vertices

(DamkS) or a densest subgraph with at least k vertices

(DalkS) are also NP-hard [13]. Khuller et al.[13] give a 1/2-

approximation algorithm for (DalkS) and show that DamkS
is as hard as DkS within a constant factor. When the constraint

on the number of nodes is removed and the objective is to

maximize the average degree of the nodes in a subgraph,

then the problem becomes the densest subgraph problem. It is

well studied in literature and it can be solved in polynomial

time despite the fact that there is an exponential number of

subgraphs to consider. Goldberg [12] formally defined the

problem in an undirected graph and presented an algorithm

that computes a densest subgraph in O(log(n)) maximum-flow

computations. In [4], Charikar describes a simple heuristic that

has a 2-approximation guarantee.

Event detection. Promising research in this field includes

the work of Angel et al. [1] based on dense subgraph discovery.

The algorithm finds all (possibly overlapping) sub-graphs

that have the density above a certain threshold and presents

these sub-graphs as corresponding to events. There are also

approaches that target a slightly different problem: given an

event, the goal is to keep track of all updates and major

sub-events concerning that event. In [6] the authors use only

non-textual features in order to discover sub-events related to

a given an event. They present a model which is based on

the intuition that users tend to communicate less with each

other while an event is occurring. Using a logistic regression

approach they detect goals during the soccer World Cup of

2010. In [16] tweets are represented as a graph and sub-events

are identified using the notion of graph degeneracy.

IV. ALGORITHMS

A. Branch and Bound Algorithm for HkS

Branch and bound is a well-known method for solving

combinatorial maximization problems. The main idea is to

divide the search space into several branches of computation.

Intuitively, we can think of the whole process as forming a

tree starting from the root which is the set of all possible

114

solutions, while the children of a node are smaller sets of

solutions. Forming the children of a node is called branching
phase. Each node of the tree is associated to a lower bound

(generally a solution of the problem) and an upper bound,

while if the upper bound of a node in the tree is lower than

the global lower bound (that is, the maximum of the solutions

found so far), the children of the node do not need to be

explored as they would lead to a worse solution, so the branch

can be pruned.

In our approach, the branching phase is based on deciding

whether to add a specific edge (and thus its endpoints) in

the corresponding solution or not. More specifically, if we are

looking for the heaviest subgraph of size k, our branch and

bound algorithm consists of the following.

• We start with the root such that all edges are possibly

here or not. The upper bound is the sum of the
(
k
2

)

heaviest edges, while the associated solution is the empty

subgraph, the lower bound is thus 0.

• Then at each iteration we create two children for the node

with maximum lower bound (i.e. density of the associated

solution). Suppose the node is at depth i in the tree, we

keep the decisions made on the first i−1 edges and create

two children, one where the ith edge is included and one

where it is not.

The lower bound is given by the sum of the weights on the

edges of the subgraph induced by the edges that are included.

Assume the number of nodes in the subgraph induced by

the edges that are included is s. Then the upper bound is given

by the weights of subgraph plus the sum of the next
(
k
2

)−(
s
2

)

highest weight edges.

When we add a new edge (u, v) we have to check if both

endpoints are part of the current’s solution vertex list. If they

are not, we add them in the vertex list and we update the

weight of this solution by adding the weight of every possible

edge between u (resp v) and vertices in S. We thus need a

subroutine to check efficiently if two nodes are adjacent or

not.

Checking adjacency efficiently. We initially compute a

core ordering (or degeneracy ordering) of the unweighted

version of the graph. We then keep for each node in the graph

a sorted list of its neighbors having higher core ordering (the

maximum size of such a truncated neighborhood list is thus c,
the core value of the graph). Given 2 nodes x and y (w.l.o.g.

we assume that y has a higher core ordering than x) we can

efficiently check if they are adjacent by checking if y is in the

truncated neighborhood list of x by binary search in O(log(c))
time. Note that this step is in practice the bottleneck of our

algorithm taking about 80% of the time. We were not able

to make this subroutine faster in practice using a hashtable

containing all edges.

The worst case total running time of the process of creating

a child is thus in O(k · log(c) (where c is the core value of

the graph), which is the time to check if u and v belongs to

the neighborhood of the nodes in the solution subgraph (there

are at most k − 1 of them), note that the maximum size of a

neighborhood is n− 1.

We keep forming the children of the node with the higher

lower bound till the branch is pruned. In addition to the

pruning using lower and upper bound, if the number of nodes

in the subgraph exceeds k we also prune the branch. When we

add a new edge (u, v), we have to check for both endpoints if

they belong in the current solution. If they don’t, we add the

weight of the edges between the endpoints of the new edge

(u, v) and the vertices of the current solution. However, if such

an edge (u, x) has a higher ranking than (u, v) (i.e. the weight

of (u, x) is greater or equal to the weight of (u, v)), then we

can prune this solution. Indeed, since we make the decisions

on edges in non-increasing order according to their weight it

means that this edge (u, x) was excluded from the solution, it

thus cannot be added at this step.

A key feature of a branch and bound algorithm is the order

by which the method iterates over the nodes of the branch and

bound tree. This order can be BFS, DFS, based on the lower

bound or on the upper bound of a node. After examining those

different order, we found that examining the nodes according

to the weight of the candidate solutions was the most efficient

one. Hence, every time a child is created by the branch and

bound algorithm, it is added to a heap, whose head is always

the solution of maximum weight.

Intuition behind our method. The intuition behind our

method is that the best solution should contain many edges

of high weight (that is well ranked in non-increasing order of

weight), while possibly containing few edges of low weight.

The method should not explore all edges till the ones of low

weights as those will be added to the solution through forming

the induced subgraph on the edges of high weight.

Branch and bound on nodes. During the branching phase

where we make decisions upon the edges, one might ask if

it would be better to make decisions upon the vertices. After

some experimentation with both approaches, we observed that

branch and bound with edges is more efficient. Indeed, a good

upper bound for the branch and bound with edges is easy to

compute, while we couldn’t find any simple way to do so

for the branch and bound with nodes. In addition, ranking

edges in non-increasing order of weight is rather natural and

it is more probable that the best solution contains edges of

high weight leading to a quicker termination of the algorithm.

While ranking nodes is less natural (even though weighted

degree ordering or weighted-core ordering are possible) and

nodes in the best solutions can be ranked further leading to a

slower termination of the algorithm.

Approximation algorithm for HkS. In order to obtain an

α approximation of the HkS problem, we modify our branch

and bound algorithm in the following way. If at some point,

the current largest upper bound divided by the current best

solution is higher than α, we output the solution. As there is

no other subgraph of size k such that the sum of the edges is

higher than the largest upper bound, we know that our solution

115

Algorithm 1 Branch and bound

1: Input: A graph G(V,E) and an integer k
2: Output: The heaviest k-subgraph of G(V,E)
3: Let edges be the edge list sorted in non-increasing order

according to the weight

4: For a current BnB node, let S be the list of vertices of

the subgraph, w its weight, b the upper bound and i the

index of the current edge.

5: Initially S ← ∅, w ← 0, i ← 0, b ← sum of the heavier
k(k−1)

2 edges

6: HEAP.insert((S,w, i, b))
7: bestSolution← 0
8: while HEAP is not empty do
9: (S,w, b, i) ← HEAP.pop();

10: if b ≤ bestSolution or |S| > k then
11: Prune current solution

12: else
13: if w > bestSolution then
14: bestSolution← w
15: (S1, w1, b1, i1)← createChild((S,w, b, i) ,1)

16: HEAP.insert((S1, w1, b1, i1))
17: (S0, w0, b0, i0)← createChild((S,w, b, i) ,0)

18: HEAP.insert((S0, w0, b0, i0))

19: return best solution found;

Algorithm 2 Procedure createChild((S,w, b, i), int c)

1: if c = 1 then
2: e← edges[i];
3: Let (u, v) be the endpoints of edge e
4: if u /∈ S then
5: for all x ∈ S do
6: if (u, x) ∈ E then
7: w ← w + (u, x).weight

8: S ← S ∪ {u}
9: if v /∈ S then

10: for all x ∈ S do
11: if (v, x) ∈ E then
12: w ← w + (v, x).weight

13: S ← S ∪ {v}
14: i← i+ 1;

15: Update b;
16: return (S,w, b, i)

is an α-approximation.

Top heavy k-subgraphs. Due to the hardness of the prob-

lem we cannot hope to solve it optimally, so we use a simple

greedy heuristic: we find the heaviest k-subgraph, we remove

all its vertices and their incident edges from the graph and we

iterate on the remaining graph until we have found t subgraphs

or the graph is empty. At the end of the computation, we will

obtain at most t disjoint subgraphs. Note that this heuristic

gives a 1
t -approximation guarantee as the first found heaviest

subgraph is at least as heavy as any subgraph in the optimal

solution containing t subgraphs.

B. Heuristic based on weighted core decomposition

In order to have a basis for comparison, we implement

the greedy heuristic used in [2]. The algorithm is based on

the weighted core decomposition and it consists in repeatedly

removing a vertex with the minimum weighted-degree in

the currently remaining graph until exactly k vertices are

left. We implemented the algorithm using a min-heap as

detail in Algorithm 3, so that its asymptotic running time is

O((m+ n) · log(n)).

Algorithm 3 Weighted core heuristic for DkS

1: for each node u in G do
2: dw(u) ← weighted-degree of u
3: Δη(u) ← list of neighbors of u and associated edge

weight (v, wu,v)

4: create a min heap HEAP initialized with (u, dw(u)) for

each node u in G
5: while HEAP has more than k elements do
6: u ← HEAP.pop()
7: for each (v, wu,v) ∈ Δ(u) do
8: dw(v) ← dw(v)− wu,v

9: update HEAP with (v, dw(v))
return the k nodes in HEAP

One essential drawback of this algorithm is that it does not

have any fixed parameter approximation guarantee. As proved

in [2], for k < n
3 it has a O(kn) approximation guarantee,

however for our setting k is small (events are described by a

small number of entities, in practice we work with k smaller

than 20), while n is large and thus the approximation guarantee

can be very bad.

Next we show that for any α < 1, we can find a graph where

the ratio between the solution the weighted core heuristic and

the optimal one is smaller than α. This can be easily seen in

Figure 1, for k = 2, we modify the edge weight between u
and v to be an integer δ, satisfying δ > 1

α and we keep a

clique of size (δ + 2) where every edge has unitary weight.

This can be extended also for larger k.

Fig. 1. On this graph for k = 2 the best solution is the subgraph
induced by the vertices u, v with total weight 3. However, the weighted
core decomposition algorithm will exclude first those two vertices since the
contribution of every vertex in the clique is 4 and theirs is 3.

116

Improving the solution by local search. Note that the

solution given by Algorithm 3 is a stable local optimum in the

sense that adding a node such that the weight of the subgraph

of size k + 1 is maximized and then removing the node such

that the size of the subgraph of size k is maximized will lead

to a solution having the same value as the initial one. However

we can improve the solution by switching a node inside the

subgraph of size k and a node outside the subgraph such that

the weight is maximized, this can be repeated till the solution

becomes a stable local optimum with respect to this switch

operation. This can be done efficiently by considering only

the nodes inside the subgraph and nodes outside the subgraph

having at least one neighbor inside the subgraph. We also add

this technical improvement which does not lead to a better

approximation but gives, in practice, slightly better results.

V. EXPERIMENTS

A. Experimental setup

We collected a set of tweets by means of the Twitter

Streaming API during the months of November and December

2015. The sample of tweets contains only English and French

tweets (language is automatically detected by the Twitter

platform).

We construct graphs from each of the dataset as follows. We

extract nouns from the tweets using the Stanford POS Tagger
2 and also hashtags and we construct a weighted undirected

graph G = (V,E,w), where the set of nodes consists of the

words extracted in the previous step, while there is an edge

between two nodes if the corresponding words co-occur in

at least one tweet, the weight corresponds to the number of

co-occurrences.

We obtain four graphs which are detailed Table I.

Name Nodes Edges
French-November 220 K 2.9 M
French-December 200 K 2.1 M
English-November 2.5 M 4.5 M
English-December 1.8 M 3.1 M

TABLE I
OUR SET OF GRAPHS OF WORDS EXTRACTED FROM TWEETS.

The algorithms were implemented in Java and were run

on a machine under GNU/Linux with 2.39 GHz clock, while

limiting the total amount of memory available to 20 GB.

B. Running time and structural comparisons

Table II shows the running time of our branch and bound

algorithm as well as the one based on weighted core decom-

position on our set of graphs of words extracted from Twitter.

The time of the heuristic based on weighted core does not

vary much with k as it computes the weighted core, improve

the solution using local search and then outputs the last k
nodes we show the average value. As we can see, in most

cases, both algorithms take few seconds for k ≤ 15. However,

2http://nlp.stanford.edu/software/tagger.shtml

as we will see later and in Figure 2, the time of the branch

and bound algorithm explode when k is larger. This can be

explained as when k is large, the probability that the solution

contains many edges of high weight and only few edges of low

weight becomes lower. This shows a limitation of our approach

which is not efficient when k is too large, however for small k
we can find the exact solution efficiently. Note that for event

detection, only small k values are interesting as events are

usually described by a small set of relevant keywords.

Table III shows the sum of the weights on the obtained

subgraph. Our branch and bound algorithm always achieve to

find the optimal solution. We used the value of the solution

of our branch and bound algorithm to compute the ratio of

the solution obtained by the heuristic based on weighted core

and the optimal solution. As we can see the approximation of

the weighted core heuristic is variable: sometimes as good as

0.99, while it can be as bad as 0.67.

Table IV shows the ratio between the number of edges in

the found subgraph of size k and the number of edges in a

clique of size k. As we can see, in all cases except the one

of ”Twitter-fr December” the solution is a clique. This shows

that the structure of those real-world graphs is special and

that, even though we are looking for HkS and not cliques,

designing an algorithm to find a clique of size k and of

maximum weight is a very similar problem on those real-world

graphs. As enumerating cliques can be done efficiently in real-

world graphs [5], [15], a heuristic based on enumerating all

cliques of size k and returning the one of maximum weight

could be considered.

Approximation for larger k. Figure 2 (left) shows the

running time of our exact branch and bound algorithm as a

function of the input k (number of nodes in the subgraph)

for our four datasets. We truncated the curves at 1 hour of

computation. As we can see, within one hour our program

can solve the problem for k = 16 for French-December while

it can go up to k = 36 for English-December. We also show,

Figure 2 (right) the same curves, but for our approximation

branch and bound algorithm. We set the wished approximation

ratio to α = 1.5. This time our algorithm is able to solve the

problem for larger k: within one hour our program computes

a 1.5 approximation for k = 20 for French-December while

it can go up to k = 105 for English December.

C. Top t heavy k-subgraphs

In this section we present the events that we found using

our technique, i.e. computing heavy disjoint subgraphs in

the graphs French-November (Table V) and French-December

(Table VI). Through experimentation we noticed that the most

relevant value for k is 5, meaning that events are usually

described using a few important keywords.

In the month of November the heaviest subgraph corre-

sponds to the terrorist attacks in Paris. Two of the places where

the attacks occurred are mentioned, the concert hall Bataclan

and the stadium Stade de France. Another interesting event

found by our method is a police raid in a Paris suburb, which

117

Weighted core B&B DkS
networks loading time k = 5, 10 and 20 k = 5 k = 10 k = 15

French-November 0.8s 0.7s 0.5s 0.9s 17s
French-December 0.6s 0.5s 0.9s 1.0s 9m58s
English-November 11s 8.9s 17s 17s 18s
English-December 12s 4.8s 7.5s 7.0s 7.0s

TABLE II
RUNNING TIME COMPARISON.

Weighted core B&B DkS
networks k = 5 k = 10 k = 15 k = 5 k = 10 k = 15

French-November 24669 (0.92) 70528 (0.96) 115341 (0.96) 26824 73432 120419
French-December 18158 (0.95) 22458 (0.67) 36358 (0.81) 19090 33338 45020
English-November 2942467 5836705 (0.99) 8114183 (0.99) 2942467 5913372 8161838
English-December 2386716 5125458 (0.98) 7830637 2386716 5235181 7830637

TABLE III
SUM OF WEIGHTS.

Weighted core B&B DkS
networks k = 5 k = 10 k = 15 k = 5 k = 10 k = 15

French-November 1.0 1.0 0.98 1.0 1.0 0.98
French-December 0.4 0.27 0.44 1.0 0.44 0.3
English-November 1.0 1.0 1.0 1.0 1.0 1.0
English-December 1.0 1.0 1.0 1.0 1.0 1.0

TABLE IV
EDGE DENSITY.

Fig. 2. Running time of branch and bound algorithm as a function of the input k for our four datasets. (left) exact algorithm. (right) approximation algorithm,
we set the approximation ratio to α = 1.5.

had the objective to find ISIS members responsible for the

terrorist attacks.

In the month of December we have more events related to

the Twitter platform, like advertising services. An interesting

event that we find in this month is connected to the United

Nations Climate Change Conference, COP21. The agreement

did not include gender equality and supporters argued that

the status of women in developing countries makes them

more susceptible to climate change. We can see also that our

technique grouped non-related events together. One possible

solution for alleviating this could be to find the densest

subgraph of at most k vertices, but we leave this to future

work. We note that our method could be improved by using

filtering techniques that have been proposed in literature for

removing common words, one example is using the entropy of

the distribution of word frequencies over time [14]. However,

our goal is to prove that a simple graph mining approach can

give meaningful results for the task of event detection.

118

Graph Description

familles victimes paris bataclan fusillade The terrorist attack that took place in Paris at the concert hall
Bataclan.

escargophone trecru gameinsight androidgames android A popular android application that posts automatic messages on
social media.

max recherche parisattacks ans rechercheparis People sharing information on missing friends before the release
of the victims names.

france stade direction mtvstars vote Another terrorist attack occurred at a stadium in Paris, Stade
de France. The event is mixed with a popular music con-
test(MTVStars).

minute silence concours follow tirage A minute of silence in the memory of the victims. Additional
unrelated words are contained.

peuple condoléances monde nouveau religion People shared a tweet of the king of Saudi Arabia, which
expressed his condolence and said terrorism does not have a
religion.

salut réponse moment côté buzz Funny videos circulating of Twitter
nation forces fois l’ordre l’effroi People talking about a police raid in a Paris suburb in search of

ISIS members.
potes followers espace ton technique Retweet of service promising to provide followers against a cost.
part infos l’histoire spectateur con Not a clear event.

TABLE V
TOP 10 HEAVY SUBGRAPHS OF SIZE 5 FOR FRENCH-NOVEMBER

Graph Description

direction mtvstars vote votos videomtv2015 Users are voting for a popular music contest, MTVStars.
gameinsight androidgames android nourriture unités Automatic posts of an android application on social media.
escargophone trecru photos l’équipage géants Automatic posts of an android application on social media.
follow concours sort tirage tweet Contests and games are organized by users for their followers.
réponse salut côté moment buzz Funny videos circulating on Twitter
serveur offres webhost hebergement cheaphostingoff Offers for cheap web hosting.
paris travail cop21 offre h/f(homme - man / femme - woman) One topic of discussion during the COP21 was equality between

women and men, as the bad status of women in developing
countries makes them more susceptible to climate change.

unfollowers d’aujourd statistiques semaine mois-ci Retweet of service promising to provide followers against a cost.
2015 regionales2015 2016 missfrance2016 miss Two events: regional elections and Miss France contest.
place chance followers espace potes Retweet of service promising to provide followers against a cost.

TABLE VI
TOP 10 HEAVY SUBGRAPHS OF SIZE 5 FOR FRENCH-DECEMBER

The top subgraphs found starting from the English tweets

all refer to a popular TV show (called MTV), where users

were asked to vote via the Twitter platform. Those results are

perhaps less interesting as they focus on one single popular

event. This shows the current limitations of our approach in

finding interesting events in Twitter. In particular, the diversity

of the results should be improved, while noisy or less relevant

information should be filtered out. However, on data which

is less noisy such as the French tweets our approach delivers

good results showing its potential.

The results presented in Table V and Table VI are obtained

in the following way. We find a heavy subgraph, we remove

its vertices and all edges adjacent to them and we iterate on

the remaining graph until we have found t subgraphs. A good

heuristic for finding the top t heavy k-subgraphs should give

subgraphs which have a large total sum of weights.

In order to compare how well performs (i) the heuristic

based on weighted core decomposition (ii) our exact branch

and bound algorithm and (iii) our approximation branch and

bound algorithm for finding the heaviest t subgraphs, we

compute the top 100 subgraphs having as subroutine one of

the three algorithms (for the approximation we use α = 1.5.

Figure 3 shows the sum of weights of the subgraphs as a

function of the number of subgraphs for the French datasets.

We omit the English datasets as the results are similar. In all

datasets our exact algorithm, as well as our approximation

algorithm for α = 1.5) consistently outperforms the weighted

core decomposition algorithm, so we can conclude that it is

better suited for solving the top t heavy k-subgraphs problem

for small values of k.

119

Fig. 3. Sum of the weights of the top t heavy subgraphs of size 5 as a function of t for our French datasets.

VI. CONCLUSION

We presented a new branch and bound algorithm for solving

the densest k-subgraph problem in weighted graphs. The

branching phase is based on deciding whether to include an

edge in the subgraph or not, edges are examined in non-

increasing order of weight in order to maximize the efficiency

of the algorithm. The pruning phase is two fold: (i) based on

the size of the subgraph and (ii) on the efficient computation

of a tight upper bound.

The algorithm scales to large weighted real-world graphs

containing millions of edges for up to k = 15 or more

depending on the structure of the graph. An approximation

version of our algorithm can scale to larger k. We show that our

algorithm performs better than a state-of-the-art method based

on weighted core decomposition of the graph. In addition, we

showed that our algorithm is able to detect relevant events in

Twitter.

Future work includes improvements of our branch and

bound algorithm using parallel computing, as well as its gen-

eralization to the detection of other kinds of subgraphs. One

possible direction is community detection, where a community

is intuitively defined as a set of nodes that are highly connected

together, but poorly connected to the outside [10]. Another

perspective is in improving the quality of the results for event

detection when dealing with noisy data.

REFERENCES

[1] A. Angel, N. Koudas, N. Sarkas, D. Srivastava, M. Svendsen, and
S. Tirthapura. Dense subgraph maintenance under streaming edge weight
updates for real-time story identification. VLDB Journal, 23(2):175–199,
2014.

[2] Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. Greedily finding
a dense subgraph. Journal of Algorithms, 34(2):203 – 221, 2000.

[3] A. Bhaskara, M. Charikar, E. Chlamtac, and U. Feige. for Densest k
-Subgraph. Organization, (873):201–210.

[4] M. Charikar. Greedy Approximation Algorithms for Finding Dense
Components in a Graph. Approximation Algorithms for Combinatorial
Optimization, pages 84–95, 2000.

[5] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms.
SIAM Journal on Computing, 14(1):210–223, 1985.

[6] F. Chierichetti, J. Kleinberg, R. Kumar, M. Mahdian, and S. Pandey.
Event Detection via Communication Pattern Analysis. pages 51–60,
2014.

[7] U. Feige. The Dense k -Subgraph Problem 1 Introduction. 1999.

[8] U. Feige and M. Langberg. Approximation algorithms for maximiza-
tion problems arising in graph partitioning. Journal of Algorithms,
41(2):174–211, 2001.

[9] S. Fortunato. Community detection in graphs. Physics Reports, 486(3-
5):75–174, 2010.

[10] S. Fortunato. Community detection in graphs. Physics reports,
486(3):75–174, 2010.

[11] D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense
subgraphs in massive graphs. International Conference on Very Large
Data Bases (VLDB), pages 721—-732, 2005.

[12] A. V. Goldberg. Finding a maximum density subgraph, 1984.

[13] S. Khuller and B. Saha. On finding dense subgraphs. Icalp, 5555:597–
608, 2009.

[14] R. Long, H. Wang, Y. Chen, O. Jin, and Y. Yu. Towards effective event
detection, tracking and summarization on microblog data. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), 6897 LNCS(800):652–
663, 2011.

[15] K. Makino and T. Uno. New algorithms for enumerating all maximal
cliques. In Scandinavian Workshop on Algorithm Theory, pages 260–
272. Springer, 2004.

[16] P. Meladianos, G. Nikolentzos, F. Rousseau, Y. Stavrakas, and M. Vazir-
giannis. Degeneracy-based real-time sub-event detection in twitter
stream. 2015.

[17] M. Osborne and M. Dredze. Facebook , Twitter and Google Plus for
Breaking News: Is There a Winner ? Proceedings of the 8th International
AAAI Conference on Weblogs and Social Media, pages 611–614, 2014.

[18] B. Saha, A. Hoch, S. Khuller, L. Raschid, and X. N. Zhang. Dense
subgraphs with restrictions and applications to gene annotation graphs.
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 6044

LNBI:456–472, 2010.

120

