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ABSTRACT
Investigative Journalism (IJ, in short) requires combining highly
heterogeneous digital datasets coming from a wide variety of
sources. We have developed ConnectionLens, a system that inte-
grates such sources into a single heterogeneous graph and enables
users to query the graph using keywords. The first iteration of
the system [7] followed a mediator architecture which severely
constrained its query scalability. Thus, we fully re-engineered
the system, moving it to a warehouse architecture, and replacing
its core components (information extraction, data querying, and
interactive interfaces), which allowed us to handle uses cases orders
of magnitude larger than the previous platform. In a consortium
of computer scientists and investigative journalists, we propose to
demonstrate ConnectionLens’ capability to integrate arbitrary het-
erogeneous datasets and query them flexibly by means of keywords.
Among several scenarios, our main focus will be on a real-world
journalistic use case about situations which may lead to Conflicts
of Interest between biomedical experts and various organizations,
such as corporations, lobbies, etc. The demonstration will show-
case the end-to-end data analysis pipeline, illustrate each system
component, and the different parameters governing graph creation
and querying.

CCS CONCEPTS
• Information systems → Graph-based database models; In-
formation integration.
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1 INTRODUCTION
Journalism and the press are critical ingredients of any modern
society. Like many other industries, such as trade, or entertainment,
journalism has benefitted from the explosion of Web technologies,
which enabled instant sharing of their content with the audience.
However, unlike trade, where databases and data warehouses had
taken over daily operations decades before the Web age, many
newsrooms discovered the Web and social media, long before build-
ing robust information systems where journalists could store their
information and/or ingest data of interest for them.

Simultaneously, highly appreciated journalism work often re-
quires acquiring, curating, and exploiting large amounts of digital
data. Among the authors, S. Horel co-authored the “Monsanto Pa-
pers” series, which obtained the European Press Prize Investigative
Reporting Award in 2018 [2]; a similar project is the “Panama Pa-
pers” (later known as “Offshore Leaks”) series of the International
Consortium of Investigative Journalists [1]. In such projects, jour-
nalists must work with heterogeneous data, which they often find
in different data models (structured such as relations, semistructured
such as JSON or XML documents, or graphs, including but not
limited to RDF, as well as unstructured text). We, the authors, are
currently collaborating on such an Investigative Journalism (IJ,
in short) application, focused on the study of situations poten-
tially leading to conflicts of interest1 (CoIs, in short) between
biomedical experts and various organizations: corporations, indus-
try associations, lobbying organizations, or front groups. Informa-
tion of interest in this setting comes from: scientific publications (in
PDF) where authors declare, e.g., “Dr. X. Y. has received consulting
fees from ABC”; semi-structured metadata (typically XML, used for
instance in PubMed), where authors may also specify such connec-
tions; a medical association, say, French cardiology, may build its
disclosure database which may be relational, while a company may
disclose its ties to specialists in a spreadsheet.

To address the nature of the data, characterized by a high degree
of heterogeneity, in par with the nature of the queries, which re-
quire the discovery of connections among entities, we have built
ConnectionLens. This system integrates data in a graph model, then
queries the graph using keywords to get a set of trees connecting all

1According to the 2011 French transparency law, “A conflict of interest is any situation
where a public interest may interfere with a public or private interest, in such a way
that the public interest may be, or appear to be, unduly influenced.”
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Figure 1: Graph data integration in ConnectionLens.
graph nodes matching the respective keywords. We introduce next
the end-to-end data analysis pipeline implemented in Connection-
Lens for the CoI IJ application. First, we describe the pipeline, and
then we summarize the fundamental parts of our system relevant
to the execution of the IJ CoI pipeline. Finally, we explain the demo
scenario and outline related work.

2 USE CASE: CONFLICTS OF INTEREST IN
THE BIOMEDICAL DOMAIN

The topic. Biomedical experts such as health scientists and re-
searchers in life sciences play an important role in society, advising
governments and the public on health issues. They also routinely
interact with industry (pharmaceutical, agrifood, etc.), consulting,
collaborating on research, or otherwise sharing work and interests.
To trust advice from these experts, it is important to ensure vested
interests do not unduly influence the advice. However, IJ work,
e.g. [15, 16, 21], has shown that disclosure information is often
scattered across multiple data sources, hindering access to potential
conflicts of interest. We now illustrate the data processing required
to gather and collectively exploit such information.
Sample data. Figure 1 shows a tiny fragment of data that can be
used to find connections between scientists and companies. For now,
consider only the nodes shown as a black dot or as a text label, and
the solid, black edges connecting them; these model directly the data.
ConnectionLens add the others as we discuss in Section 3.1. (𝑖) Hun-
dreds of millions of bibliographic notices (in XML) are published
on the PubMed website; the site also links to research (in PDF).
In recent years, PubMed has included an optional CoIStatement
element where authors can declare (in free text) their links with
industrial players; less than 20% of recent papers use it, and some
of those present are empty (“The authors declare no conflict of
interest”). (𝑖𝑖) Within the PDF papers themselves, paragraphs titled,
e.g., “Acknowledgments”, “Disclosure statement” etc. may contain
such information, even if the CoIStatement is absent or empty. This
information is accessible if one converts the PDF in a format such
as JSON. In Figure 1, Alice declares her consulting for ABCPharma
in XML, yet the “Acknowledgments” paragraph in her PDF paper
mentions HealthStar2. (𝑖𝑖𝑖) A (subset of a) knowledge base (in RDF)

2This example is inspired from prior work of S. Horel where she identified (manually
inspecting thousands of documents) an expert supposedly with no industrial ties, yet
who authored papers for which companies had supplied and prepared data.

such as WikiData describes well-known entities, e.g., ABCPharma;
however, less-known entities of interest in an IJ scenario are often
missing from such KGs, e.g., HealthStar in our example. (𝑖𝑣) Special-
ized data sources, such as a trade catalog or a Wiki website built by
other investigative journalists, may provide information on some
such actors: in our example, the PharmaLeaks website shows that
the industry also funds HealthStar. Such a site, established by a
trusted source (or colleague), even if it has little or no structure, is
a gold mine to be reused since it saves days or weeks of tedious IJ
work. In this and many IJ scenarios, sources are highly heterogeneous,
while time, skills, and resources to curate, clean, or structure the data
are not available.
Sample query. Our application requires the connections of spe-
cialists in lung diseases, working in France, with pharmaceutical
companies. In Figure 1, the edges with green highlight and those
with yellow highlight, together, form an answer connecting Alice to
ABCPharma (spanning over the XML and RDF sources); similarly,
the edges highlighted in green together with those in blue, spanning
over XML, JSON and HTML, connect her to HealthStar.
The potential impact of a CoI database. A database of known
relationships between experts and interested companies, built by
integrating heterogeneous data sources, would be a precious asset,
allowing, e.g., to select experts without close industrial ties, in a
government advisory committee.

3 DATA ANALYSIS PIPELINE

Figure 2: ConnectionLens data analysis pipeline.

The heterogeneous data processing pipeline of our system is out-
lined in Figure 2. We describe ConnectionLens graph construction,
which integrates heterogeneous data into a graph, stored and in-
dexed in a centralized warehouse, in Section 3.1. On this graph, the
GAM keyword search algorithm, described in Section 3.2, answers
queries such as the one required for our CoI scenario. Technical
details as well as experimental validations of choices made in our
system are included in [3].

3.1 ConnectionLens graph construction
ConnectionLens integrates JSON, XML, RDF, HTML, relational or
text data into a graph, as illustrated in Figure 1. Each source is
mapped to the graph as close to its data model as possible, e.g.,
XML edges have no labels while internal nodes all have names,
while JSON conventions are different, etc. Next, ConnectionLens
extracts named entities from all text nodes, regardless of the
data source they come from, using trained language models. In the
figure, blue, green, and orange nodes denote Organization, Location,
and Person entities, respectively. Each entity node is connected
to the text node it has been extracted from by an extraction edge
recording also the confidence of the extraction (dashed in the fig-
ure). For the edges that reflect the structure of the input datasets, we
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assume confidence 1 and we omit it from the figure. Entity nodes
are shared across the graph, e.g., Person:Alice has been found in
three data sources, Org:BestPharma in two sources etc. Connection-
Lens includes a disambiguation module which avoids mistakenly
unifying entities with the same labels but different meanings. Fi-
nally, nodes with similar labels are compared, and if their similarity
is above a threshold, a sameAs (red) edge is introduced connecting
them, labeled with the similarity value.

A sameAs edge with similarity 1.0 is called an equivalence edge.
Then, 𝑝 equivalent nodes, e.g., the ABCPharma entity and the
identical-label RDF literal, would lead to 𝑝 (𝑝 − 1)/2 equivalence
edges. To keep the graph compact, one of the 𝑝 nodes is declared
the representative of all 𝑝 nodes, and instead, we only store the 𝑝 −1
equivalence edges adjacent to the representative. Details on all the
above graph construction steps can be found in [3].

Formally, a ConnectionLens graph is denoted𝐺 = (𝑁, 𝐸), where
nodes can be of different types (URIs, XML elements, JSON nodes,
etc., but also extracted entities) and edges encode: data source
structure, entities extracted from text, and node label similarity.

3.2 The GAM keyword search algorithm
We view our motivating query, on highly heterogeneous content
with no a-priori known structure, as a keyword search query
over a graph. Formally, a query 𝑄 = {𝑤1,𝑤2, . . . ,𝑤𝑚} is a set of
𝑚 keywords, and an answer tree (AT, in short) is a set 𝑡 of 𝐺 edges
which (𝑖) together, form a tree, and (𝑖𝑖) for each𝑤𝑖 , contain at least
one node whose label matches 𝑤𝑖 . We are interested in minimal
answer trees, that is answer trees that satisfy the following proper-
ties: (𝑖) removing an edge from the tree will make it lack at least
one keyword match, and (𝑖𝑖) if more than one nodes match a query
keyword, then all matching nodes are related through sameAs links
with similarity 1.0. In the literature (see Section 5), a score function
is used to compute the quality of an answer, and only the best 𝑘
ATs are returned for a small integer 𝑘 . Our problem is harder since:
(𝑖) our ATs may span over different data sources, even of different
data models; (𝑖𝑖) they may traverse an edge in its original or in
the opposite direction, e.g., to go from JSON to XML through
Alice; this brings the search space size in 𝑂 (2 |𝐸 |), where |𝐸 | is the
number of edges; and (𝑖𝑖𝑖) no single score function serves all
IJ needs since, depending on the scenario, journalists may favor
different (incompatible) properties of an AT, such as “being char-
acteristic of the dataset” , “being surprising”, or on the other hand,
“preferring small trees”. Thus,we cannot rely on special proper-
ties of the score function, to help us prune unpromising parts of
the search space, as done in prior work (see Section 5). Intuitively,
tree size could be used to limit the search: very large answer trees
(say, of more than 100 edges) generally do not represent meaningful
connections. However, in heterogeneous, complex graphs, users
find it hard to set a size limit for the exploration. Nor is a smaller
solution always better than a larger one. For instance, an expert and
a company may both have “nationality” edges leading to “French”
(a solution of 2 edges), but that may be less interesting than finding
that the expert has written an article specifying in its CoIStatement
funding from the company (which could span over five edges or
more).

Figure 3: Trees built by GAM for our sample query.

OurGrow-and-Aggressive-Merge (GAM) algorithm [3, 5] enu-
merates trees exhaustively, until a number of answers are found, or
a time-out. First, it builds 1-node trees from the nodes of 𝐺 which
match 1 or more keywords, e.g., 𝑡1, 𝑡2, 𝑡3 in Figure 3, showing some
partial trees built when answering our sample query. The keyword
match in each node label appears in bold. Then, GAM relies on
two steps. Grow adds to the root of a tree one of its adjacent edges
in the graph, leading to a new tree: thus 𝑡4 is obtained by Grow
on 𝑡1, 𝑡5 by Grow on 𝑡4, and successive Grow steps lead from 𝑡2 to
𝑡15. Similarly, from 𝑡3, successive Grow’s go from the HTML to the
JSON data source (the HealthStar entity occurs in both), and then
to the XML one, building 𝑡20. Second, as soon as Grow builds a tree,
it is Merged with all the trees already found, rooted in the same
node, matching different keywords and having disjoint edges wrt
the given tree. For instance, assuming 𝑡15 is built after 𝑡5, they are
immediately merged into the tree 𝑡16, having their edges’ union.
Each Merge result is then merged again with all qualifying trees
(thus the “aggressive” in the algorithm name). For instance, when
Grow on 𝑡20 builds a tree rooted in the PubMedArticle node (not
shown; call it 𝑡𝐴), Merge(𝑡16, 𝑡𝐴) is immediately built, and is exactly
the answer highlighted with green and blue in Figure 1.

Together, Grow and Merge are guaranteed to generate all solu-
tions. If𝑚 = 2, Grow alone is sufficient, while𝑚 ≤ 3 also requires
the Merge step. GAM may build a tree in several ways, e.g., the an-
swer above could also be obtained as Merge(Merge(𝑡15, Grow(𝑡20)),
𝑡5); GAM keeps a history of the trees already explored, to avoid
repeating work on them. Importantly, GAM can be used with any
score function. Its details are described in [3, 5] and its scalability
with different graph models and sizes is demostrated in [4].

4 SCENARIOS AND USER EXPERIENCE
ConnectionLens is implemented in Java and Python, whereas it
relies on PostgreSQL to store the graph. We describe below in detail
the CoI scenario at the center of our proposal, then briefly a few
other scenarios and the user experience.
The CoI graph. We selected sources based on S. Horel’s exper-
tise and suggestions, as follows. (𝑖) We loaded 450.000 PubMed
bibliographic notices (XML), corresponding to articles from 2019
and 2020; they occupy 934 MB on disk. (𝑖𝑖) We have downloaded
42.400 PDF articles corresponding to these notices (those that were
available in Open Access), transformed them into JSON using an ex-
traction script we developed, and preserved only those paragraphs
starting with a set of keywords (“Disclosure”, “Competing Interest”,
“Acknowlegments” etc.) which have been shown [2] to encode po-
tentially interesting participations of people (other than authors)
and organizations in an article. Together, these JSON fragments



Figure 4: ConnectionLens search screenshot.

occupy 340 MB on disk. The JSON and the XML content from the
same paper are connected (at least) through the URI of that paper,
as shown in Figure 1. (𝑖𝑖𝑖) We have crawled 781 HTMLWeb pages
from a set of websites describing people and organizations pre-
viously involved in scientific expertise on sensitive topics (such
as tobacco or endocrine disruptors), specifically: desmogblog.com,
tobaccotactics.org, wikicorporates.org and sourcewatch.org. These
pages total 24 MB. To protect author privacy, we will apply a light
pseudonymization on the author names.
CoI Queries. Our corpus features hundreds of thousands of indi-
viduals and organizations. We will prepare a set of 5-10 queries,
spanning over the XML, HTML and JSON data sources. A result
of the sample 3-keyword query “roche bayer garassino” appears
in Figure 4, after some further interactive result exploration which
allows adding to the visualization panel, neighbors of query answer
nodes, to grasp more information about them. In the figure, Marina
Chiara Garassino, coauthored a paper where she declared a conflict
of interest with Bayer, as indicated with the blue, straight-lined
boxes. Her coauthor in that paper, Alessio Cortellini (in the black
long-dashed-lined box), has published a second paper, where he
declared a conflict of interest with Roche, as indicated with the red,
short-dashed-lined boxes. Thus, the initial query result connects the
three terms. The GUI also allows adding results of different queries
in the same panel, eliminating nodes or edges deemed uninteresting
etc. Through gradual query-navigation-graph edit steps, users can
identify an interesting part of the data; clicking on each node also
shows its original datasource to facilitate verification.
Other scenarios We will also illustrate ConnectionLens on a few
other scenarios. For instance, we will use the fact-check corpus
available from DataCommons.org (5.500 news fact-checks in JSON,
4.2 MB on disk), a together with a selection of the GDELT global
event database (CSV) providing detailed space, time and actor infor-
mation for each event, and queries returning all fact-checks from
a certain organization about a certain actor or event, such as a
visit of a president abroad, together with the fact-check authors,
event locations etc. Extracted people, organization, and places allow
interconnecting the datasets.
Varying system setting ConnectionLens allows controlling: the
entity extractor and language used when ingesting the data; the
distance functions that control similarity comparisons; the score
function used to compare query answers (with different trade-offs
between the quality of the keyword matches, the link strength,
the answer size, as well as user preferences, injected as a set of
keywords, and used to re-weigh answers by their proximity with

these keywords). We will vary these and demonstrate the impact
on the user experience.

5 RELATEDWORK AND CONCLUSION
ConnectionLens was first decribed in [7]. This demonstration re-
flects a set of changes, outlined below; the interested reader can find
more information in the full articles we refer to. First, the system
moved from a mediator to a warehouse approach, vastly improv-
ing performance [4]. Second, new, better-performing information
extraction modules were added, as well as a disambiguation mod-
ule [4]. Third, the query algorithm has been completely redesigned
(see Section 3.2 and [3, 4]).

Our work is clearly a form of data integration [9]. The first plat-
form we proposed to Le Monde journalists was a mediator [6], re-
sembling polystores, e.g., [10, 18]. However, we found that: (𝑖) their
datasets are changing, text-rich and schema-less, (𝑖𝑖) running a set
of data stores (plus amediator) was not feasible for them, (𝑖𝑖𝑖) knowl-
edge of a schema or the capacity to devise integration plan was
lacking. Our prior work [7] addressed (𝑖𝑖𝑖) by introducing keyword
search, but it still kept part of the graph virtual, and split keyword
queries into subqueries sent to sources. Consolidating the graph in
a single store, and the centralized GAM algorithm [3] greatly sped
up search. We share the goal of exploring and connecting data, with
data discovery methods [11, 12, 22, 23], which have mostly focused
on tabular data.

Keyword search has been studied for XML, e.g., [13, 20], relations,
e.g., [24], graphs, e.g., [8, 14], and in particular RDF graphs [19].
However, our problem is harder in several aspects: (𝑖) we do not
assume any regularity of our text-rich graphs; (𝑖𝑖) we allow answer
trees to explore edges in both directions; (𝑖𝑖𝑖) our algorithm is
fully orthogonal wrt. the score function, invalidating Dynamic
Programming (DP) methods such as [20] and other similar prunings.
In particular, we show in [5] that edges with a confidence lower than 1,
such as similarity and extraction edges in our graphs, compromise,
for any “reasonable” score function which reflects these confidences,
the optimal substructure property at the core of DP. Approximate
RDF keyword search algorithms, e.g., [17], are tied to specific score
functions, not applicable in our context (many edges are unlabeled,
graphs are very heterogeneous etc.)
For a demo preview, see: https://youtu.be/5B0KRow0dv8.
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